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Fig. 1. Our method applied to various situations including navigating rough terrain, interaction with other characters, and using scene props.

In this paper we present a learned alternative to the Motion Matching algo-
rithm which retains the positive properties of Motion Matching but addi-
tionally achieves the scalability of neural-network-based generative models.
Although neural-network-based generative models for character animation
are capable of learning expressive, compact controllers from vast amounts
of animation data, methods such as Motion Matching still remain a popular
choice in the games industry due to their flexibility, predictability, low pre-
processing time, and visual quality - all properties which can sometimes be
difficult to achieve with neural-network-based methods. Yet, unlike neural
networks, the memory usage of such methods generally scales linearly with
the amount of data used, resulting in a constant trade-off between the diver-
sity of animation which can be produced and real world production budgets.
In this work we combine the benefits of both approaches and, by breaking
down the Motion Matching algorithm into its individual steps, show how
learned, scalable alternatives can be used to replace each operation in turn.
Our final model has no need to store animation data or additional matching
meta-data in memory, meaning it scales as well as existing generative models.
At the same time, we preserve the behavior of Motion Matching, retaining
the quality, control, and quick iteration time which are so important in the
industry.
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1 INTRODUCTION
In interactive applications such as video games, demand for larger,
more immersive and dynamic worlds has steadily made it more
difficult to produce characters which can respond realistically and
naturally in the exponentially growing number of different situa-
tions that are presented to them. Meanwhile, the amount of data
required has also slowly grown, and AAA video games now often
contain tens of thousands of unique animations that all must be
triggered in the correct context [Holden 2018].
Introduced by Clavet and Büttner [2015], Motion Matching is a

method of searching a large database of animations for the anima-
tion which best fits the given context. This method has quickly been
adopted by many studios due to its simplicity, flexibility, control-
lability, and the quality of the motion it produces [Büttner 2019;
Clavet 2016; Harrower 2018; Hussain 2019; Zinno 2019]. Rather
than specifying the fine-grained animation logic via a state-graph,
Motion Matching allows animators to specify the properties of the
animationwhich should be produced, and the best fittingmatch is se-
lected automatically via a nearest neighbor search. When combined
with large amounts of data, Motion Matching proves a simple and
effective way of dealing with the vast number of possible transitions
and interactions that are required by a modern AAA video game.
Additionally, since Motion Matching plays back the animation data
stored in the database as-is, with only simple blending and post-
processing such as inverse kinematics applied, quality is generally
preserved, animators retain a level of control, and the behaviour
can be tracked and debugged with appropriate tools. Finally, since
it has minimal training/pre-processing time, adjustments can often
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be made in real-time, resulting in quick iteration time. The primary
limitation of Motion Matching is that the memory usage (and run-
time performance to some degree) scale linearly with the amount
of data that is provided and the number of features to be matched.
This results in a constant balance between the expressiveness of
the system, the quality of the results, and the real-world memory
and performance budgets. This leaves developers unable to combine
it with powerful data processing methods such as automatic data
augmentation.
Meanwhile, the academic community has seen an increasing in-

terest in neural-network-based generative models of motion due to
their lowmemory usage, scalability in terms of data, and fast runtime
evaluation. Recent methods have shown that neural-network-based
models can be effectively applied to generate realistic motion in
a number of difficult cases including navigation over rough ter-
rain [Holden et al. 2017], quadruped motion [Zhang et al. 2018],
and interactions with the environment or other characters [Lee
et al. 2018; Starke et al. 2019]. Yet, such models are often difficult
to control, have unpredictable behaviour, long training times, and
can produce animation of lower quality than that of the original
training set [Büttner 2019; Zinno 2019].
In this paper we present a method which retains the positive

aspects and behaviour of Motion Matching, but with the scalability
of neural-network-based models. It works by breaking down the
Motion Matching algorithm into individual components which are
then replaced with learned, scalable alternatives. More specifically,
we break the algorithm down into three specialized neural networks
that can be used in unison, or in various specific combinations
depending on the exact runtime, memory, and quality requirements
of the controller.
In summary, our contribution is a learned alternative to the Mo-

tion Matching algorithm which replaces the three key stages of the
algorithm with specialized neural networks, resulting in state-of-
the-art animation generation results in terms of animation quality,
runtime performance, and memory usage.

2 RELATED WORK
In this section we discuss previous work including research on
data-driven animation synthesis, generative models for character
animation, and motion-matching-based methods.

2.1 Data-Driven Animation Synthesis
There is a long history of data-driven animation synthesis in the
animation community with a large variety of tools being used in-
cluding graphs, linear methods, kernel-based methods, and most
recently neural networks.

Graphs are a commonly used structure for controlling and gener-
ating animation. For unstructured data, transitions can be inserted
at similar frames and the resulting graph structure searched to find
animations which achieve particular goals using algorithms such as
A* [Arikan and Forsyth 2002; Kovar et al. 2002; Lee et al. 2002; Min
and Chai 2012; Safonova and Hodgins 2007]. Due to the use of a
“matching cost”, Motion Matching could be viewed as a special case
of a graph-based search algorithm where the goal cost and pose cost
are combined, transitions are made possible at regular intervals, and

a greedy algorithm is used in traversal. Due to their simplicity and
flexibility, many extensions to motion graphs are proposed, such as
motion grammars [Hyun et al. 2016] which can be used to enforce
rules in the graph traversal, and parametric motion graphs [Heck
and Gleicher 2007; Shin and Oh 2006] which allow blending at nodes
and transitions. To accelerate the search of motion graphs, various
forms of pre-computation have been proposed including usage of a
lookup table, functional approximation, or reinforcement learning
(RL) [Lee and Lee 2004; Lo and Zwicker 2008; Treuille et al. 2007].
Notably, a graph like structure was extended to the continuous
domain by Lee et al. [2010], who employed RL to decide how to
best interpolate the ten nearest neighbors, and pull the synthesized
animation toward valid configurations which achieved the desired
goals.

Although graph-basedmethods are simple and powerful, the auto-
matic graph construction process is difficult to control and maintain,
and as such researchers have often looked towards statistical meth-
ods for managing animation data instead. Linear methods such as
Principal Component Analysis (PCA) and local PCA have been used
to synthesise animation from low dimensional signals [Chai and
Hodgins 2005; Tautges et al. 2011], while kernel-based methods have
been applied successfully to build character controllers in many non-
linear contexts [Grochow et al. 2004; Levine et al. 2012; Mukai 2011;
Mukai and Kuriyama 2005; Park et al. 2002; Rose et al. 1998; Wang
et al. 2008]. More recently, neural-network-based methods have
grown in popularity. Auto-regression uses the current frame and
user controls to predict the next frame [Fragkiadaki et al. 2015; Har-
vey and Pal 2018; Henter et al. 2019; Lee et al. 2018; Li et al. 2017;
Park et al. 2019; Pavllo et al. 2019, 2018; Taylor and Hinton 2009;
Wang et al. 2018], while offline methods use convolutions which
move over the temporal dimension [Holden et al. 2016, 2015; Li et al.
2019].
Interactive generative models based on neural networks often

exhibit a “dying-out” effect when generating long sequences of
motion [Fragkiadaki et al. 2015]. Researchers have therefore been
interested inways to overcome this effect, including the introduction
of a Phase or Gating Network [Holden et al. 2017; Zhang et al. 2018],
yet such additions increase the complexity and resource require-
ments of the neural networks involved. In addition, such methods
are difficult to extend to interactions with other characters, or with
the environment. Lee et al. [2018] use a careful encoding of the goal
state which updates a timer until completion each time step along
with the network recurrence and pose state, and a smart method of
data augmentation, to produce a character which can accurately fol-
low user goals such as positioning and performing specific actions
at specific times. Starke et al. [2019] propose an extension to the
gating model, a specific environmental encoder network, as well as
ego-centric and and goal-centric encodings to achieve a controller
which can interact naturally with the environment. However, such
methods can be difficult to train and control, and can often smooth
out the appearance of animation or produce bad behaviour when
extrapolating beyond the domain of the training data.
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Fig. 2. Overview of the basic Motion Matching algorithm.

2.2 Motion Matching
Motion Matching was first presented by Büttner and Clavet [2015]
as a greedy approximation of the Motion Fields algorithm [Lee et al.
2010]. This system, which was developed for the game For Honor,
was later presented by Clavet [2016] who framed it as a search
over a database of animation to find the frame which best matches
the current pose and user trajectory. Additional methodologies for
data capture and control were presented by Zadziuk [2016]. Later,
Harrower [2018] showed the same methods can be used for close
character interactions, while Holden [2018] showed that Motion
Matching is a special case of using machine learning for animation
synthesis where a Nearest Neighbor Regression is used to map from
user controls to animation data. More recently, Büttner [2019] and
Zinno [2019] presented additional applications of Motion Matching
including parkour and soccer. They both compared it to neural-
network-based generative models, presenting the benefits in terms
of quality and flexibility, while also addressing the core limitation
of memory usage. In addition, Büttner [2019] presented a method
using neural networks to accelerate the nearest neighbor search of
Motion Matching by mapping the high dimensional feature vector
into an optimized, smaller, quantized space [Jégou et al. 2011]. In
academia, similar matching-based approaches have been used to
produce kinematic responses to physical interactions [Zordan et al.
2005], while more recently, Bergamin et al. [2019] and Hong et
al. [2019] have both used it as a lightweight and simple kinematic
controller to guide a physically-based animation system.

3 BASIC MOTION MATCHING
While there are many variations of the Motion Matching algorithm,
in this section we present the details of our own state-of-the-art
implementation used in several AAA game productions. For a visual
description of this algorithm please see Fig 2.
At a high level our algorithm works as follows: every N frames

we search a database of animation for a frame which best matches
some set of features which describe the current context and desired
user properties of the animation we wish to produce. If a frame with
a lower cost than the current frame is found, a transition is inserted,
and the new animation is blended in.

More formally, we can start by defining a feature vector x, which
describes the features we wish to match at each frame. As shown
in Section 5, many different behaviours can be described by choos-
ing different feature vectors, but in the case of a locomotion con-
troller we can define it in a similar way to Clavet [2016] where

Fig. 3. Overview of the Learned Motion Matching algorithm.

x = {tt td ft Ûft Ûht } ∈ R27, and tt ∈ R6 are the 2D future trajec-
tory positions projected on the ground, 20, 40, and 60 frames in
the future (at 60Hz) local to the character, td ∈ R6 are the future
trajectory facing directions 20, 40, and 60 frames in the future local
to the character, ft ∈ R6 are the two foot joint positions local to
the character, Ûft ∈ R6 are the two foot joint velocities local to the
character, and Ûht ∈ R3 is the hip joint velocity local to the character.

Since features may be of vastly different magnitudes, it is impor-
tant to normalize them. Here, we scale each feature (e.g. left foot
position) by its standard deviation in the data-set. This scaling can
then be tweaked further by a user weighting to adjust its impor-
tance in the search, however we found that in most cases a default
weighting of 1 is sufficient.

Next, we define a pose vector y, which contains all the pose
information for a single frame of animation. In our case we can
define y = {yt yr Ûyt Ûyr Ûrt Ûrr o∗} where yt yr are the joint local
translations and rotations, Ûyt Ûyr are the joint local translational and
rotational velocities, Ûrt Ûrr are the character root translational and
rotational velocity, local to the character forward facing direction,
and o∗ are all the other additional task specific outputs, such as foot
contact information, the position or trajectory of other characters
in the scene, or the future positions of some joints of the charac-
ter. In general we represent rotational velocities using the scaled
angle axis representation, and joint rotations as quaternions, but
convert to the 2-axis rotation matrix representation used in Zhang
et al. [2018] when given as input to or output from a neural network.
Although we describe our method using a pose representation com-
mon to video games, at a high level our algorithm does not make
any assumptions about the pose representation and we found it
worked equally well with character space encodings typical in other
neural-network-based methods such as Holden et al. [2017].
Feature and pose vectors are computed for each frame i and

concatenated into large matrices: X = [x0, x1, ..., xn−1] and Y =
[y0, y1, ..., yn−1], called theMatching Database, andAnimation Data-
base respectively. See Appendix A for more details.
At runtime, every N frames, or when the user input changes

significantly, a query vector x̂ is constructed which contains the
desired feature vector. Pose-based features can typically be extracted
from the entry in the Matching Database X corresponding to the
current frame i , while other user controls can be constructed via
other means - for example, to control the features corresponding to
the future trajectory position and direction we use a spring-damper-
based system which generates a desired velocity and direction based
on the current state of the joystick [Kermse 2004].
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The task is to then find the entry in the Matching Database which
minimizes the squared euclidean distance to the query vector.

k∗ = argmin
k
∥x̂ − xk ∥

2 (1)

Once found, if the current frame i does not match the nearest
frame, i , k∗, then animation playback continues from this point
i := k∗, and a transition is inserted using inertialization blend-
ing [Bollo 2016, 2017]. Each frame we increment the frame variable
i := i + 1 and the pose yi is looked up in the Animation Database.

To support binary features such as gaits or other tags there are
two options. Either these can be added to the feature vector x as one-
hot encoded vectors, or alternatively, ranges in the Animation and
Matching Databases can be pre-computed, and the search limited
to these ranges when certain gaits or tags are required.

Since a brute force search over every entry ofX is too slow, gener-
ally an acceleration structure is required such as a KD-Tree [Clavet
2016], a voxel-based lookup table (as in Büttner [2018]), or clus-
tering [Yi and Jee 2019]. We found a custom two-layer bounding
volume hierarchy consisting of axis-aligned bounding boxes fitted
to groups of 16 frames and 64 frames was particularly simple and
effective. See Appendix B for more details.

Finally, PCA can be applied to the Feature Database X and other
feature vectors such as x̂ to reduce their dimensionality. This non-
essential step does not change the overall behaviour of the algorithm
(as, providing enough dimensions are kept, distances are preserved
under PCA) so we omit it from the rest of our explanation, but note
that it can be a useful way to reduce memory usage and increase
performance at the cost of some search accuracy when a large
number of redundant or correlated features are used.

4 LEARNED MOTION MATCHING
By examining Fig 2 we can observe that the Motion Matching al-
gorithm consists of three key stages: Projection: where a nearest
neighbor search is used to find the feature vector in the Matching
Database which best matches the query vector, Stepping: where we
advance forward the index in the Matching Database, and Decom-
pression: where we look up the associated pose in the Animation
Database which corresponds to our current index in the Matching
Database. These stages are simply repeated every N frames and a
blend is inserted to remove any discontinuity.
In terms of scale, the core issue with this system is the reliance

on X and Y, which incur large memory overheads and grow as we
add additional animations, pose features, or matching features.

In the rest of this sectionwe showhowwe fix this issue by creating
learned alternatives to each of the three key stages and remove
the need to store any databases in memory. First, we remove the
reliance on Y by training a decoder network called the Decompressor
which takes as input the feature vector x, as well as additional latent
variables z, found via an encoder network called the Compressor,
and outputs a pose vector y. Next, we remove the reliance on X
by training two networks that work together called the Stepper,
and the Projector. The Stepper learns the dynamics of the system,
advancing the matching and latent feature vectors forward in time
by outputting a delta which is added to xi and zi to produce xi+1
and zi+1, while the Projector emulates the nearest neighbor search,

Algorithm 1: Our training algorithm for Decompressor D.
Function TrainDecompressor(X, Y, θC , θD):

/* Compute forward kinematics */

Q ← ForwardKinematics(Y)
/* Generate latent variables Z */

Z ← C([Y Q]T ;θC)
/* Reconstruct pose Ỹ */

Ỹ ← D([X Z]T ;θD )
/* Recompute forward kinematics */

Q̃ ← ForwardKinematics(Ỹ)
/* Compute latent regularization losses */

Llr eд ← wlr eд ∥ Z ∥
2
2

Lsreд ← wsreд ∥ Z ∥1
Lvreд ← wvreд




 Z0−Z1
δt





1

/* Local & character space losses */

Lloc ← wloc


 Y ⊖ Ỹ




1

Lchr ← wchr


 Q ⊖ Q̃




1

/* Local & character space velocity losses */

Llvel ← wlvel




 Y0 ⊖ Y1
δt −

Ỹ0 ⊖ Ỹ1
δt





1

Lcvel ← wcvel




 Q0 ⊖ Q1
δt −

Q̃0 ⊖ Q̃1
δt





1

/* Update network parameters */

θC θD ← RAdam(θC θD,∇
∑
∗ L∗)

end

taking some query vector x̂ as input, and mapping it to the feature
vector and latent variables of the nearest match in the database xk∗
and zk∗ .
The result is the Learned Motion Matching algorithm shown

in Fig 3. We use the Projector network on user input x̂ to project
it onto the nearest feature vector in the matching database and
associated latent variables. The Stepper is then used to move this
set of feature vector and latent variables forward in time, and the
Decompressor is used to generate the full character pose. As in basic
Motion Matching, this process is simply repeated every N frames,
and a blend is inserted to remove the discontinuity.

4.1 Decompressor
The goal of the Decompressor is to avoid storing Y in memory by
instead taking the feature vector at a particular frame xi and pro-
ducing the corresponding pose yi directly. While the feature vector
often includes key information about the corresponding pose such
as the foot positions and velocities (making this mapping partially
possible), it usually does not contain enough information to fully
infer it. For this reason we introduce additional latent variables zi ,
which we discover via an autoencoder-like structure. Using a net-
work called the Compressor, we map a pose yi to a low dimensional
representation zi which is then concatenated to xi , and given as
input to the Decompressorwhich attempts to reconstruct the original
pose yi . In this way we learn what additional information is missing
from the feature vector x, and encode it in z.
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A key aspect of the Decompressor is the loss function. If we use a
naïve mean squared error loss we observe jittery, low quality mo-
tion (see Section 6.3). Instead, we design a loss function intended to
minimize the visually perceived error which, as in Pavllo et al. [2019;
2018], uses forward kinematics to measure the error in character
space as well as velocity-based losses which ensure the output pose
changes smoothly in time. We also add some additional regulariza-
tion losses on Z to induce sparsity and smoothness.

For details on the training procedure please see Algorithm 1. Here,
given 2 frames from the Animation Database Y and Matching Data-
base X, we use the Compressor C to find latent variables Z, and the
Decompressor D to try and reconstruct the original pose. While
we present the procedure for a single training sample (a pair of two
frames), we apply it to each element in a mini-batch and average
the result when updating network parameters θC,θD . The operator
⊖ computes the difference between two poses where all pose dif-
ferences are defined as basic subtractions with the exception of the
rotational difference of yr , which is computed by first converting
to rotation matrix form and then subtracting. In addition, in the
velocity losses Llvel and Lcvel we avoid computing the difference
in pose velocities Ûyr and Ûyt as these accelerations are too noisy to
be useful. Weights w∗ are set to give roughly equal weight to all
pose-based losses and a small weighting to regularization losses.

We found providing the Compressor with both local and character
space inputs improved the accuracy as it was able to copy features
directly to the latent space if it found them useful. For example,
character space foot joint velocities are a useful feature for predicting
joint contact information.
Once trained, the Decompressor is already useful without the

other networks. By making the dimensionality of z small, computing
zi for each frame i , and storing Z = [z0, z1, ..., zn−1] instead of Y,
we can achieve significant memory savings without affecting at all
the behaviour of the Motion Matching algorithm. The Compressor
and Decompressor can therefore be used as a fairly effective general
purpose compression method for animation data even when no
matching features are present. For more details see Table 3.

While the Decompressor removes the need to store Y in memory,
we must still store X and Z, both of which can be fairly large when
many matching features or latent variables are used. In Section 4.2
and Section 4.3 we describe how we also remove the need to store
these two additional databases.

4.2 Stepper
Given some initial matching and latent feature vectors xi zi , each
frame we must advance forward in time to retrieve the next consec-
utive vectors xi+1 and zi+1. In basic Motion Matching this is trivial
- we simply increment the index i and look-up the new row of X or
Z. However, if we wish to avoid storing X and Z in memory this
simple advancement is not possible.
Instead, we introduce the Stepper, a network trained to take as

input matching and latent feature vectors at a given frame xi zi , and
output a delta which can be added to produce the feature vectors at
the next frame xi+1 zi+1.

For details on the training procedure please see Algorithm 2. Here,
we train the network in an auto-regressive fashion, and given a short

Algorithm 2: Our training algorithm for Stepper S.
Function TrainStepper(X, Z, s, θS):

/* Set initial states */

X̃0, Z̃0 ← X0, Z0
/* Predict X̃ and Z̃ over a window of s frames */

for i ← 1 to s do
/* Predict deltas for X̃ and Z̃ */

δ x̃, δ z̃ ← S([X̃i−1 Z̃i−1]T ;θS)
X̃i ← X̃i−1 + δ x̃
Z̃i ← Z̃i−1 + δ z̃

end
/* Compute losses */

Lxval ← wxval


 X − X̃ 



1
Lzval ← wzval



 Z − Z̃ 


1

Lxvel ← wxvel




 X0→s−1−X1→s
δt −

X̃0→s−1−X̃1→s
δt





1

Lzvel ← wzvel




 Z0→s−1−Z1→s
δt −

Z̃0→s−1−Z̃1→s
δt





1

/* Update network parameters */

θS ← RAdam(θS,∇
∑
∗ L∗)

end

window of s feature vectors X and latent variables Z, we repeatedly
predict the next feature and latent variables and feed them in at the
next frame. While we present the procedure for a single training
sample, we apply it to each element in the mini-batch and average
the result when updating θS . Weights w∗ are set to give roughly
equal weight to all losses.
Once trained, the Stepper can be used as a replacement for the

Stepping part of the pipeline, and produce a stream of matching
and latent feature vectors without reliance on X or Z. While an
initial starting state may be found using the Compressor, the near-
est neighbor search still requires X and Z to be kept in memory.
In Section 4.3 we describe how this limitation is removed using a
network trained to map from some user query x̂ to x and z directly.

4.3 Projector
Although the Stepper allows us to advance forward feature vectors
in time, the matching database X is still required by the nearest
neighbor search that is performed on the query vector x̂.

To finally remove the need to store X and Z in memory we intro-
duce the Projector, a network trained to emulate the nearest neighbor
search behaviour and produce feature vectors matching the nearest
entry xk∗ from x̂.

For details on the training procedure please see Algorithm 3. Here,
given a feature vector from the Matching Database x, we sample
a noise magnitude nσ and use it to scale a Gaussian noise vector
n. We add this to x to produce x̂ and find the nearest neighbor k∗.
The Projector is then trained to output the associated feature vector
and latent variables xk∗ and zk∗ . While we present the procedure
for a single training sample here, we apply it to each element in the
mini-batch and average the result when updating θP . By sampling
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Algorithm 3: Our training algorithm for Projector P.
Function TrainProjector(x, X, Z, θP):

/* Sample uniform noise magnitude nσ */
nσ ∼ U(0, 1)
/* Sample gaussian noise vector n */
n ∼ N(0, 1)
/* Add noise to feature vector */

x̂ ← x + nσ n
/* Find nearest neighbor */

k∗ = Nearest(x̂,X)
/* Project feature vector */

x̃, z̃ ← P(x̂;θP )
/* Compute losses */

Lxval ← wxval ∥ xk∗ − x̃ ∥1
Lzval ← wzval ∥ zk∗ − z̃ ∥1
Ldist ← wdist



 ∥ x̂ − xk∗ ∥22 − ∥ x̂ − x̃ ∥22 

1
/* Update network parameters */

θP ← RAdam(θP ,∇
∑
∗ L∗)

end

Table 1. Network architecture details such as the number of layers (includ-
ing input and output layers), number of units in each of the hidden layers,
and the activation functions used for each network. Note: the Compressor
is generally not required at runtime, and so is larger with a more expensive
activation function.

Network #Layers #Units Activation
C 5 512 ELU
D 3 512 ReLU
S 4 512 ReLU
P 6 512 ReLU

different noise magnitudes, we make the Projector robust to pertur-
bations of different sizes. Weights w∗ are set to give roughly equal
weight to all losses.

Once trained, the Projector completes our Learned Motion Match-
ing pipeline. Instead of a nearest neighbor search, every N frames
we pass the user query x̂ through the Projector P. Then, each frame,
we advance forward the found matching and latent feature vectors
using the Stepper S, and decode them to produce a pose using the
Decompressor D.

4.4 Training
All networks are trained in PyTorch using the RAdam optimizer [Liu
et al. 2019], with a batch size of 32 and a learning rate of 0.001 which
is decayed by a factor of 0.99 every 1000 iterations. The Stepper
network is trained with a window size s of 2N frames, whereN is the
number of frames in-between each search (typically ∼10). We use a
latent variable dimensionality of z ∈ R32. For all networks, training
is performed for up to 500,000 iterations single-threaded on an Intel
Xeon 3.5Ghz 12 Core CPU. We found the small network sizes made
training on the CPU almost always more efficient than training on
the GPU. Although results can be obtained in a few hours, training

Fig. 4. Our method applied to a typical character locomotion scenario and
a character traversing rough terrain.

Fig. 5. Our method applied to a character getting up and sitting down on a
chair and two characters interacting.

Fig. 6. Our method applied to quadruped dog and bear characters.

overnight is required for optimal results (see Table 3). Note that
while the Decompressor must always be trained first to allow for
the latent variables Z to be computed, the Stepper and Projector can
afterwards be trained in parallel. For specific details on the network
architectures used please see Table 1.

5 RESULTS
In this section we present the results of our method applied in
various Motion Matching scenarios, an overview of which is shown
in Fig 1 and numerical details of which are provided in Table 2. For
more in-depth results please see the supplementary video.
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Table 2. Details of the different scenarios shown in our results.

Scenario #Joints #Frames #Features Frame Rate
Locomotion 28 89480 27 60Hz

Terrain 28 170534 35 60Hz
Chair 28 22398 19 60Hz

Interaction 28 38976 32 60Hz
Dog 58 124418 39 60Hz
Bear 75 694272 55 60Hz

User-Study 54 23382 27 30Hz

In Fig 4 we show our method applied to character locomotion.
Here we produce high quality, natural and responsive motion with-
out the need for phase or other additional variables. In this case the
matching features are the foot positions and velocities relative to the
root, the hip velocity, the future trajectory positions and directions
at 20, 40, and 60 frames in the future (at 60Hz), as well as the gait of
the character (walking, running, or crouching). In addition to the
pose, we output from the Decompressor binary contact information
and apply inverse kinematics to remove foot sliding. We extend
this demo to locomotion over rough terrain by including additional
features such as the height of the terrain under the toes 0, 15, 30,
and 45 frames in the future. This height is recorded relative to the
current height of the character’s hips. At runtime, we therefore need
to output from the Decompressor the future toe positions 15, 30,
and 45 frames in the future so we can find the height below them,
while at training time we need to find the height of the terrain in
the motion capture data. For more information on how we do this
please see Appendix D.
In Fig 5 we show our method applied to sitting and getting up

from a chair. Here we use the standard locomotion controller shown
previously, but in addition regularly try to match from a set of
sitting down and getting up animations using the relative chair
position and direction. If a match is found with a cost below some
threshold we switch to this controller and then regularly re-search
to see if an even better match can be found. Trajectory warping
and inverse kinematics are also applied such that the character
arrives exactly at the chair location without foot sliding. For get-up
animations we similarly match the position and direction of the
character at the end of the animation with the newly placed chair.
We also show our method applied to character interactions. Here,
the player-controlled character matches the best fitting interaction
using features which include the other character’s position, facing
direction, and velocity. The non-player-controlled charactermatches
the trajectory that was present in synchronized animation played
by player-controlled character. This synchronized trajectory must
be output by the Decompressor of the player-controlled character,
as otherwise it would not be available at runtime.

In Fig 6 we show our method applied to a dog character trained on
a large database of raw unstructured motion capture data. Here we
match the position and velocity of all four paws as well as the future
trajectory and gait. Our method naturally extends to quadrupeds,
and produces high quality movement without any loss of fidelity or
need for phase information or specific gating networks. In addition,
we show our method using the same set of features, but applied to

Fig. 7. Comparison between our method and basic Motion Matching. Left:
Our Method (LMM), Right: basic Motion Matching (MM).

a bear. By using an automatic data-augmentation technique known
as carpet unrolling [Miller et al. 2015] on around one minute of
key-framed animation data (3581 frames), we can produce a wide
variety of turns as well as locomotion over rough terrain. The result
is an extensive database consisting of ∼700000 frames of animation.
This large, augmented database is very inefficient when combined
with basic Motion Matching but is easily accommodated by our
method.

6 EVALUATION
In this section we evaluate our method, first comparing our results
to basic Motion Matching and other state-of-the-art neural-network-
based models, and then measuring the performance characteristics.
Finally, we perform a user study using an implementation of our
method in a AAA production where Motion Matching is used for
third-person player locomotion.

6.1 Comparison
In this section we compare our method against basic Motion Match-
ing and other state-of-the-art neural-network-based models includ-
ing Phase-Functioned Neural Networks (PFNN) and Mode-Adaptive
Neural Networks (MANN). In all comparisons we train on the same
data, use the same input features, and apply the same pre-processing
and post-processing steps (such as foot sliding clean-up), with the
exception of animation blending which is not required by the PFNN
or MANN.
In Fig 7 we see a side-by-side comparison between our method

and basic Motion Matching. Here, when a search is triggered we
give both systems the same input and evaluate them in parallel
until the next search is triggered. It is difficult to tell the difference
between our results and that of basic Motion Matching even though
we achieve large memory gains.

In Fig 8 we compare our method against a PFNN trained on the
rough terrain data set. While the PFNN produces motion which
adapts to the terrain, we find our method retains more of the detail
found in the original data and overall looks smoother and more
diverse. We also compare our method against a MANN trained on
our quadruped data set. Similarly, while theMANN produces natural
motion, it does not retain the same level of detail or quality as our
method which more closely resembles the original training data.
For a better visual comparison please see the supplementary video.
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Fig. 8. Comparison between our method and other neural-network-based
models Left: Our Method (LMM), Top Right: Phase-Functioned Neural
Networks (PFNN), Bottom Right: Mode-Adaptive Neural Networks (MANN).

6.2 Performance
In this section we evaluate the performance and memory usage
of our method. For full details please see Table 3. All performance
measures including neural network inference were made single-
threaded on an Intel Xeon 3.5Ghz 12 Core CPU using a custom,
optimized neural network inference library. In Animation Databases
Y, the velocity information is removed and instead computed on-the-
fly via finite difference, while joint translations that do not change
are only stored once to reduce overall memory usage.

One of the key aspects of our method is its performance in terms
of evaluation time and memory usage. We find our method has
faster evaluation time than other state-of-the-art neural-network-
based models, while using less memory. When compared to basic
Motion Matching our method has a slower evaluation time, but
vastly improved memory usage. In addition, if faster computation
time is required, or the animation database is small (such as in the
Chair example), usage of the Decompressor by itself provides a
compromise between the two. Although we do not present it here,
we found neural network weights could be effectively compressed
as 16-bit integers without significant loss of precision or runtime
performance, potentially reducing the memory usage of Learned
Motion Matching further by a factor of two.
We note that while we compare our method to uncompressed

animation data, state-of-the-art animation compression technology
generally achieves ∼5× compression ratios for databases stored in
the way described above, with decompression times of ∼20µs per
frame [Frechette 2019]. Additionally, while our method requires
blending, other auto-regressive neural-network-based models do

Fig. 9. Evaluation of how closely our method follows pre-defined paths.

Fig. 10. Experiment showing the impact of inverse kinematics on our
method. Left: Rough terrain traversal data used but inverse kinematics
disabled. Right: Inverse kinematics enabled, but only flat locomotion data
used.

not. In our experiments blending generally took ∼20µs per frame.
Even taking these difference into account the overall characteristics
of our algorithm compared to others do not change.

Finally, important to note is that although training times for our
method are long compared to basic Motion Matching (which re-
quires no training), our framework still allows artists and designers
to iterate quickly as they can use basic Motion Matching until they
are happy with their results, and then simply switch to Learned
Motion Matching as a post-process.

6.3 Experiments
In this section we present some additional experiments designed
to evaluate our method. For better visual explanation please see
additional supplementary material.
In Fig 9 we show our approach evaluated in a path following

setup. Here, we see the characters are able to fairly closely follow
the user defined paths. It is worth noting that our feature weights
are configured for animation quality rather than path following pre-
cision, and by reducing the weight for the foot position and velocity
features a more accurate path following can be achieved [Clavet
2016].
We evaluate the numerical precision of our Decompressor by

measuring the distribution of positional errors of joints compared to
the ground truth. We found our method produced visually smooth
animation with an average positional error of 1.4cm, and standard
deviation of 1.1cm (evaluated for the Terrain scenario).We also found
that when using a standard mean squared error loss function the
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Table 3. Performance and memory comparison between basic Motion Matching (MM), Motion Matching with the Decompressor (DMM), Our Method -
Learned Motion Matching (LMM), Phase-Functioned Neural Networks [Holden et al. 2017] (PFNN), and Mode Adaptive Neural Networks [Zhang et al. 2018]
(MANN). Missing entries are assumed to be zero. A few important things to note: (1) The Stepper and Projector are trained in parallel, meaning the total
training time is only affected by the longer of the two. (2) Projection is performed only every N = 10 frames, reducing the average impact on frame time.
(3) The PFNN and MANN are both trained using the GPU as otherwise training would take too long, while all other networks are trained using the CPU.

Memory (MB) Performance (µs) Training (hours)
Scenario Method X Y Z D S P Total D S P Frame D S P Total

Locomotion
MM 9.4 42.7 52.1 90 9
DMM 9.4 11.1 0.9 21.4 85 90 94 8.7 8.7
LMM 0.9 1.2 3.2 5.3 85 100 127 197 8.7 6.1 3.3 14.7

Terrain

MM 23.3 81.4 104.7 213 21
DMM 9.4 21.3 1.0 31.7 81 213 102 8.8 8.8
LMM 1.0 1.3 3.2 5.5 81 106 129 200 8.8 6.5 5.4 15.3
PFNN 9.3 9.3 1370 1370 21.5 21.5

Chair
MM 1.6 10.7 12.3 62 6
DMM 1.6 2.8 1.9 6.3 80 62 86 8.6 8.6
LMM 1.9 2.4 6.4 10.7 80 93 111 184 8.6 6.2 2.8 14.8

Interaction
MM 4.8 18.6 23.4 140 14
DMM 4.8 4.8 1.9 11.4 82 140 96 8.4 8.4
LMM 1.9 2.5 6.5 10.9 82 102 131 197 8.4 6.3 2.8 14.7

Dog

MM 18.9 117.6 136.5 111 11
DMM 18.9 15.5 1.9 36.3 131 111 142 16.9 16.9
LMM 1.9 1.3 3.3 6.5 131 118 139 262 16.9 6.1 5.2 23.0
MANN 16.9 16.9 2440 2440 5.9 5.9

Bear
MM 149.1 846.5 995.6 946 94
DMM 149.1 86.7 2.5 238.3 93 946 187 20.4 20.4
LMM 2.5 1.3 3.3 7.1 93 110 137 340 20.4 6.5 8.9 29.3

User-Study
MM 2.4 21.0 23.4 110 11
DMM 2.4 2.9 1.7 7.0 83 110 94 16.6 16.6
LMM 1.7 1.2 3.2 6.1 83 62 98 155 16.6 6.3 6.4 23.0

Decompressor produced noisy, jittery motion compared to our loss
function. For visual comparison please see additional supplementary
material.
Finally, in Fig 10 we show our method applied to locomotion

over rough terrain in two separate ablations. Firstly, where inverse
kinematics is disabled, and secondly, where inverse kinematics is
enabled, but where the system has only been training on flat loco-
motion data. We observe that without inverse kinematics enabled
our method exhibits some foot sliding and penetration into the ter-
rain, while when excluding data of traversal over rough terrain the
motion looks unnatural and unbalanced.

6.4 User Study
We performed a user study to evaluate how our method compares
to basic Motion Matching in terms of perceived differences, motion
quality, and responsiveness. To ensure the study was performed in
realistic conditions, we implemented Learned Motion Matching in
a AAA production where Motion Matching is used for third-person
control of the player character. We selected 34 subjects, with the
goal of covering a wide spread of expertise and experience. Subjects
included 4 women and 30 men, with ages ranging from 21 to 47,
of which 73% considered themselves gamers. In addition, 17 of our

subjects had relevant professions in the industry including anima-
tors, animation directors, motion capture artists, and animation or
gameplay programmers. Participants were not told the technology
behind any of the systems tested but received a full explanation of
the study and the questions they were going to be asked ahead of
time. The study was separated into two stages, described below.
In the first stage, subjects were provided with a character con-

troller, referred to as the reference system, and were allowed to
interactively control the character for up to five minutes until they
felt familiar enough with the system to proceed. They were then
presented with two new character controllers denoted as A and B,
and were allowed to interactively control the character as before
for up to 10 minutes, as well as given freedom to switch between
systems A and B at any time using a key press. Subjects were then
asked a series of questions with responses on a Likert scale. Firstly,
they were asked which of A or B they believed was the original
reference system they had played first (see Fig 11). Secondly, they
were asked which system they preferred in terms of animation
quality (see Fig 12). And thirdly, which they preferred in terms of
responsiveness (see Fig 13).
In this case, the original reference system presented to the sub-

jects was basic Motion Matching (MM), while systems A and B,
presented afterwards, were, for each user individually, randomly
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selected between basic Motion Matching (MM) and Learned Motion
Matching (LMM). We found that although there was a trend toward
correctly identifying the reference system, many subjects struggled
to identify the original reference system and were either unsure
or answered incorrectly. In terms of quality and responsiveness,
although we again found a slight preference toward Motion Match-
ing in terms of responsiveness, there was no preference in terms
of quality, and in general we found subjects had a large spread of
different opinions.
In the second part of the study, we allowed subjects once again

to control the reference system for several minutes. After they felt
comfortable we presented them with a sequence of 10 unknown
systems, randomly selected between MM and LMM. Subjects were
then asked to identify the system as either the reference system or
not the reference system. The results, reported in Fig 14, show that
in this setup subjects found it very difficult to classify the reference
system, including those who confidently and correctly identified
the reference system in the first part of the study. Additionally, we
did not find any correlation between a subject’s experience and
the accuracy of their answers, and some of the most experienced
subjects in terms of content evaluation (such as animation directors)
were unable to identify which was the reference system in either
stage of the study.
Finally, we asked each participant if they had comments on the

experiment and systems they tried. All subjects emphasised how
difficult they found it to tell any difference between the two systems,
and some subjects noted they were forcing themselves to focus on
tiny details which they would not do in a usual gaming context.
Those with more experience sometimes preferred the motion quality
of the learned system stating that it had “smoother transitions”,
while the system using basic Motion Matching was said to feel more
“dynamic”, “snappier”, and “executed plant-and-turn animations
better”.

The subjects who scored highest in the second test spent signifi-
cantly longer than other subjects switching back and forth between
systems A and B during the first test, enough to discover slight
differences in the character pose either during a looping animation
or during animation transitions. Then, when allowed to play with
the reference system again before the second test they were able to
identify which was which.
When asked if one animation system would be acceptable as a

replacement for the other in-game, 32 subjects answered positively
emphasizing the close similarity of the two, while two subjects
answered negatively. Among the latter, one strongly preferred the
smoothness of the learned system while the other preferred the
snappiness of basic Motion Matching.

7 DISCUSSION
In this section we discuss some of the decisions behind our method
including why we use multiple networks and the generalization
behaviour of our system.
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Fig. 11. Discrimination Test. Distribution of answers to the question “Which
system do you think is the reference system?” with the reference system
being Motion Matching (MM) and, for simplicity of presentation, system A
being the correct answer in this case.
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Fig. 12. Quality Evaluation. Distribution of answers to the question “Which
system has better animation quality?” with A: Motion Matching (MM) and
B: Learned Motion Matching (LMM).
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Fig. 13. Responsiveness Evaluation. Distribution of answers to the question
“Which system has better responsiveness?” with A: Motion Matching (MM)
and B: Learned Motion Matching (LMM).
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Fig. 14. Classification Test. Number of correct identifications of 10 randomly
selected systems between Motion Matching and Learned Motion Matching.
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7.1 Multiple Networks
A natural question about our system is, if it’s possible to use fewer
networks, and what are the benefits of using three separate net-
works? We found using multiple networks had a number of inter-
esting advantages: firstly, it was possible to train, debug, and toggle
each network in isolation and verify that the behaviour it exhibited
matched what was desired. Secondly, we found that using the De-
compressor alone was useful in many cases and provided a good
compromise when not a lot of animation data is used. Thirdly, we
found having the Decompressor and Projector work on a per-pose
basis, with all dynamics handled by the Stepper, produced a system
that was more stable, easier to understand, and simpler to use. It
is, for example, a fairly easy extension to make our system work
with variable time steps by appropriately scaling the output of the
Stepper and training on a variety of time steps. On the other hand,
making this kind of change in a large, end-to-end model such as
Starke et al. [2019] would likely require significant investment and
re-training. Finally, there is a theoretical contribution: each network
in our system plays specific roles which might be applicable in other
styles of neural-network-based model. For example, the Projector
has two key roles: firstly, it maps the user controls onto the training
data distribution which is useful when the user provides invalid
requests the system has not been trained on; secondly, it regularly
“resets” the system, ensuring the recurrence does not “die out”, get
stuck in small loops, or drift away from the data manifold, as is
common in traditional recurrent models [Fragkiadaki et al. 2015].

7.2 Generalization
Unlike other neural-network-based models we actively encourage
our system not to generalize as the Projector emulates the near-
est neighbor search. This has some obvious downsides - primarily
that our model does not interpolate to produce new animations
not present in the training data. However, it also has some advan-
tages: by closely fitting the training data and avoiding extrapolation
we ensure the state of the system is always close to a state it has
seen during training. And, while the lack of interpolation means
our model requires a more thorough data coverage, automatic data
augmentation (where the results can be verified by animators) can
be used to increase coverage instead. Similarly, by adjusting the
weights of the matching features, animators can change the projec-
tion behaviour of the nearest neighbor search - giving even finer
control over how the system behaves when there is no clear, obvious
match to select. Finally, although our networks are not trained to
generalize we found they were still robust to small differences in the
input. Most likely this is because their limited size prevents them
from over-fitting aggressively.

8 LIMITATIONS AND FUTURE WORK
During our researchwe found that the final accuracy of the Projector
had the highest impact on the overall quality of our results. It is also
the largest network, using the most memory, and whilst we found
increasing the number of hidden layers improves the quality of the
results, it can also start to drastically increase the runtime evaluation
time beyond production budgets. We believe this limitation is the
reason for some of the perceived additional smoothness reported by

our user study subjects. As a future step, it would be interesting to
explore ways of increasing the accuracy without sacrificing runtime
performance such as by using memory layers [Lample et al. 2019].
Similarly, it would be interesting to find a way to train our system
end-to-end, rather than the two-stage process we present in this
paper.

9 CONCLUSION
In this paper we presented Learned Motion Matching, an alterna-
tive to Motion Matching consisting of three unique neural networks
each trained to emulate some particular component of the algorithm.
We showed that with our method we can combine the scalability of
existing neural-network-based methods with the flexibility of Mo-
tion Matching, achieving state-of-the-art results in terms of quality,
performance, and memory usage in multiple domains.
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Fig. 15. Visual description of our search acceleration structure. We fit axis-
aligned bounding boxes to groups of consecutive frames in the Matching
Database X. Search is first performed against these bounding boxes before
continuing on to what is inside.

A CLIP STRUCTURE
For simplicity of presentation, in Section 3 we assume X and Y
consist of a single large continuous animation, but in reality anima-
tion databases consists of multiple individual clips. In our case, we
pack all animation and matching data into single large matrices X
and Y, but store alongside it (start, end, anim_index) tuples
describing the individual clips within. Generally, some care must be
taken when using this format such as when computing velocities
via finite difference or constructing windows for training. We also
use this additional information to trigger a search when playback
comes to the end of a clip, and disallow the nearest neighbor search
from returning a frame close to the end of a clip as this can result
in re-triggering the search too frequently.

B SEARCH ACCELERATION
Rather than a KD-Tree or clustering-based approach we use a simple
axis-aligned bounding-box (AABB) based method to accelerate the
nearest neighbor search. We fit axis-aligned bounding boxes to
groups of 16 and 64 frames consecutively in X (see Fig 15 for a
visual description).

For each AABB we find the distance from the query point to the
nearest point inside the AABB. If this distance is larger than the
smallest distance so far then no point inside the AABB will have
a smaller distance than our current best, and therefore there is no
need to check inside.
We found that axis-aligned bounding boxes had a number of

interesting advantages for this task. Firstly, as we iterate over the
database in order, we have excellent cache performance and avoid
the random access that can occur using structures such as KD-Trees.
Secondly, the squared distance to an AABB can be computed as a
sum of the squared distance along each dimension individually. This
allows for an essential form of early-out in the search, as the accu-
mulated distance to an AABB along just a few dimensions will often
quickly exceed the distance to the best match found so far. Finally,
axis-aligned bounding boxes are simple to use and require a minimal
amount of memory overhead. In our experiments we found two

Fig. 16. Visual example of the height map function we extract from our
animation data with contact points shown in blue.

levels of hierarchy with the sizes described above enough to greatly
accelerate the search. To accelerate training as well as runtime we
implement this same algorithm in both C++ and Cython [Behnel
et al. 2011].

C FORWARD KINEMATICS
The Forward Kinematics function used in Algorithm 1 can be defined
recursively as follows:

ForwardKinematics(Y) = {qt qr Ûqt Ûqr }, (2)

qtj = qtp + q
r
p ⊗ ytj , (3)

qrj = qrp ⊗ yrj , (4)

Ûqtj = Ûq
t
p + q

r
p ⊗ Ûy

t
j + Ûq

r
j × (q

r
p ⊗ ytj ), (5)

Ûqrj = Ûq
r
p + q

r
p ⊗ Ûy

r
j , (6)

where j is the joint index, p is the joint index of the parent joint, and
⊗ represents quaternion-quaternion multiplication or quaternion-
vector product when multiplying by a vector. For joints with no
parent such as the root joint, the local rotation and translation of
that joint are taken as-is without transformation.

D TERRAIN FITTING
Because our method avoids extrapolation, and the input features
we use to match terrain heights are more sparse than in Holden et
al. [2017] we can use a simpler terrain fitting procedure without
worrying about over-fitting. In our case we extract all the foot
contact points, and fit a nearest neighbor regression which maps
from the xy position, to the height z. Given a new 2D position we
can then get the new height using this regression function. This
produces a “stepped” style terrain as shown in Fig 16.
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