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Fig. 1. A selection of results using our method of character control to traverse rough terrain: the character automatically produces appropriate and expressive
locomotion according to the real-time user control and the geometry of the environment.

We present a real-time character control mechanism using a novel neural
network architecture called a Phase-Functioned Neural Network. In this
network structure, the weights are computed via a cyclic function which
uses the phase as an input. Along with the phase, our system takes as input
user controls, the previous state of the character, the geometry of the scene,
and automatically produces high quality motions that achieve the desired
user control. The entire network is trained in an end-to-end fashion on a
large dataset composed of locomotion such as walking, running, jumping,
and climbing movements fitted into virtual environments. Our system can
therefore automatically produce motions where the character adapts to
different geometric environments such as walking and running over rough
terrain, climbing over large rocks, jumping over obstacles, and crouching
under low ceilings. Our network architecture produces higher quality results
than time-series autoregressive models such as LSTMs as it deals explicitly
with the latent variable of motion relating to the phase. Once trained, our
system is also extremely fast and compact, requiring only milliseconds of
execution time and a few megabytes of memory, even when trained on
gigabytes of motion data. Our work is most appropriate for controlling
characters in interactive scenes such as computer games and virtual reality
systems.
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1 INTRODUCTION
Producing real-time data-driven controllers for virtual characters
has been a challenging task even with the large amounts of readily
available high quality motion capture data. Partially this is because
character controllers have many difficult requirements which must
be satisfied for them to be useful - they must be able to learn from
large amounts of data, they must not require much manual pre-
processing of data, and they must be extremely fast to execute at
runtime with low memory requirements. While a lot of progress has
been made in this field almost all existing approaches struggle with
one or more of these requirements which has slowed their general
adoption.

The problem can be evenmore challengingwhen the environment
is composed of uneven terrain and large obstacles which require
the character to perform various stepping, climbing, jumping, or
avoidance motions in order to follow the instruction of the user. In
this scenario a framework which can learn from a very large amount
of high dimensional motion data is required since there are a large
combination of different motion trajectories and corresponding
geometries which can exist.

Recent developments in deep learning and neural networks have
shown some promise in potentially resolving these issues. Neural
networks are capable of learning from very large, high dimensional
datasets and once trained have a low memory footprint and fast
execution time. The question now remains of exactly how neural
networks are best applied to motion data in a way that can produce
high quality output in real time with minimal data processing.
Previously some success has been achieved using convolutional

models such as CNNs [Holden et al. 2016, 2015], autoregressive mod-
els such as RBMs [Taylor and Hinton 2009], and RNNs [Fragkiadaki
et al. 2015]. CNN models perform a temporally local transformation
on each layer, progressively transforming the input signal until the
desired output signal is produced. This structure naturally lends
itself to an offline, parallel style setup where the whole input is
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given at once and the whole output is generated at once. In some
situations such as video games this is undesirable as future inputs
may be affected by the player’s actions. RNNs and other autoregres-
sive models [Fragkiadaki et al. 2015; Taylor and Hinton 2009] are
more appropriate for video games and online motion generation as
they only require a single frame of future input, yet they tend to
fail when generating long sequences of motion as the errors in their
prediction are fed back into the input and accumulate. In this way
autoregressive models tend to “die out” when frames of different
phases are erroneously blended together or “explode” when high
frequency noise is fed back into the system [Fragkiadaki et al. 2015].
Such artifacts are difficult to avoid without strong forms of normal-
ization such as blending the output with the nearest known data
point in the training data [Lee et al. 2010] - a process which badly
affects the scalability of the execution time and memory usage.

We propose a novel neural network structure that we call a Phase-
Functioned Neural Network (PFNN). The PFNNworks by generating
the weights of a regression network at each frame as a function of
the phase - a variable representing timing of the motion cycle. Once
generated, the network weights are used to perform a regression
from the control parameters at that frame to the corresponding pose
of the character. The design of the PFNN avoids explicitly mixing
data from several phases - instead constructing a regression function
which evolves smoothly over time with respect to the phase. Unlike
CNN models, this network structure is suitable for online, real-time
locomotion generation, and unlike RNN models we find it to be
exceptionally stable and capable of generating high quality motion
continuously in complex environments with expressive user inter-
action. The PFNN is fast and compact requiring only milliseconds of
execution time and a few megabytes of memory, even when trained
on gigabytes of motion capture data. Some of this compactness
can additionally be traded for runtime speed via precomputation
of the phase function, allowing for a customized trade off between
memory and computational resources.

Dynamically changing the network weights as a function of the
phase instead of keeping them static as in standard neural net-
works significantly increases the expressiveness of the regression
while retaining the compact structure. This allows it to learn from
a large, high dimensional dataset where environmental geometry
and human motion data are coupled. Once trained, the system can
automatically generate appropriate and expressive locomotion for
a character moving over rough terrain and jumping, and avoiding
obstacles - both in natural and urban environments (see Fig. 1 and
Fig. 9). When preparing the training set we also present a process to
fit motion capture data into a large database of artificial heightmaps
extracted from video game environments.
In summary, the contribution of the paper is as follows:

• a novel real-time motion synthesis framework that we call
the Phase-Functioned Neural Network (PFNN) that can
perform character control using a large set of motion data
including interactions with the environment, and

• a process to prepare training data for the PFNN by fitting
locomotion data to geometry extracted from virtual envi-
ronments.

Fig. 2. Visual diagram of Phase Functioned Neural Network. Shown in
yellow is the cyclic Phase Function - the functionwhich generates theweights
of the regression network which performs the control task.

2 RELATED WORK
In this section, we first review data-driven approaches for generating
locomotion. Next, we review methods for synthesizing character
movements that interact with the environment. Finally, we review
methods based on neural networks that focus on mapping latent
variables to some parameters of the user’s interest.

Data-Driven Locomotion Synthesis. Data-driven locomotion syn-
thesis is a topic that has attracted many researchers in the computer
animation and machine learning community. Frameworks based on
linear bases, kernel-based techniques, and neural networks have all
been successfully applied for such a purpose.
Techniques based on linear bases such as principal component

analysis (PCA) arewidely adopted for reducing the dimensionality of
motion data and also for predicting full body motion from a smaller
number of inputs [Howe et al. 1999; Safonova et al. 2004]. As global
PCA can have issues representing a wide range of movements in
the low dimensional latent space, local PCA is adopted for handling
arbitrary types of movements [Chai and Hodgins 2005; Tautges et al.
2011]. Chai and Hodgins [2005] apply local PCA for synthesizing
full body motion with sparse marker sets. Tautges et al. [2011]
produce similar local structures for predicting full body motion
from sparse inertia sensors. Such structures require a significant
amount of data preprocessing and computation both for training
(i.e., motion segmentation, classification and alignment) and during
run-time (i.e., nearest neighbor search).
Kernel-based approaches are proposed to overcome the limita-

tions of linear methods and consider the nonlinearity of the data.
Radial Basis Functions (RBF) and Gaussian Processes (GP) are com-
mon approaches for blending different types of locomotion [Mukai
2011; Mukai and Kuriyama 2005; Park et al. 2002; Rose et al. 1998].
Gaussian Process Latent Variable Models (GPLVM) are applied for
computing a low dimensional latent space of the data to help solve
the redundancy of inverse kinematics problems [Grochow et al.
2004] or to improve the efficiency for planning movements [Levine
et al. 2012]. Wang et al. [2008] propose a Gaussian Process Dynamic
Model (GPDM) that learns the dynamics in the latent space and
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Fig. 3. The three stages of the proposed system: In the data preprocessing stage (left), the captured motion is processed and control parameters are extracted.
Next this data is fitted to heightmap data from virtual environments. The PFNN is then trained by back propagation such that the output parameters can
be generated from the input parameters (middle). Finally, during runtime, the character motion is computed on-the-fly given the user control and the
environmental geometry (right).

projects the motion to the full space using another GP. Kernel-based
approaches suffer from the high memory cost of storing and invert-
ing the covariance matrix, which scales in the square and cube order
of the number of data points, respectively. Local GP approaches
that limit the number of samples for interpolation are proposed to
overcome this issue [Rasmussen and Ghahramani 2002], but require
k−nearest neighbor search which has a large memory usage and a
high cost for precomputation and run-time when used with high
dimensional data such as human movements.

Data-driven motion synthesis using neural networks is attracting
researchers in both the computer animation and machine learning
communities thanks to its high scalability and runtime efficiency.
Taylor et al. [2009] propose to use the conditional Restricted Boltz-
mann Machine (cRBM) for predicting the next pose of the body
during locomotion. Fragkiadaki et al. [2015] propose an Encoder-
Recurrent-Decoder (ERD) network that applies an LSTM model in
the latent space for predicting the next pose of the body. These
methods can be classified as autoregressive models, where the pose
of the character is predicted based on the previous poses of the
character during locomotion. Autoregressive models are suitable
for real-time applications such as computer games as they update
the pose of the character every frame. The cRBM and RNN models
are more scalable and runtime-efficient than their classic linear [Xia
et al. 2015] or kernel-based counterparts [Wang et al. 2008]. De-
spite such advantages, they suffer from drifting issues, where the
motion gradually comes off the motion manifold due to noise and
under-fitting, eventually converging to an average pose. Holden et
al. [2016] instead applies a CNN framework along the time domain
to map low dimensional user signals to the full body motion. This is
an offline framework that requires the full control signal along the
time-line to be specified ahead of time for synthesizing the motion.
Our framework in this paper is a time-series approach that can pre-
dict the pose of the character given the user inputs and the previous
state of the character.

Interaction with the Environment. Automatic character controllers
in virtual environments that allow the character to avoid obstacles
and adapt to terrains are useful for real-time applications such as

computer games: these approaches can be classified into methods
based on optimization and shape matching.

Methods based on optimization [Lau and Kuffner 2005; Safonova
and Hodgins 2007], sampling-based approaches [Coros et al. 2008;
Liu et al. 2010], maximum a posteriori (MAP) estimates [Chai and
Hodgins 2007; Min and Chai 2012], and reinforcement learning
techniques [Lee and Lee 2004; Lee et al. 2010; Levine et al. 2012;
Lo and Zwicker 2008; Peng et al. 2016], predict the action of the
character given the current state of the character (including the
pose) and its relation to the geometry of the environment. They re-
quire cost/value functions that evaluate each action under different
circumstances. Although it is shown that these methods can gen-
erate realistic movements, in some cases the computational cost is
exponential with respect to the number of actions and thus not very
scalable. More importantly, when using kinematic data as the rep-
resentation, it is necessary to conduct k−nearest neighbour search
within the samples [Clavet 2016; Lee et al. 2010] to pull the motion
onto the motion manifold. This can be a limiting factor in terms of
scalability, especially in high dimensional space. Levine et al. [2012]
cope with such an issue by conducting reinforcement learning in
the latent space computed by GPLVM but they require classifica-
tion of the motion into categories and limit the search within each
category. Peng et al. [2016] apply deep reinforcement learning in
the control space of physically-based animation in a way which can
handle high dimensional state spaces. This is a very promising di-
rection of research, but the system is only tested in relatively simple
2D environments. Our objective is to control characters in the full
3D kinematic space with complex geometric environments where
previous learning based approaches have not been very successful.
Another set of approaches for controlling characters in a given

environment is to conduct geometric analysis of the environments
and adapt the pose or motion to the novel geometry. Lee et al. [2006]
conduct rigid shape matching to fit contact-rich motions such as
sitting on chairs or lying down on different geometries. Grabner
et al. [2011] conduct a brute-force search in order to discover lo-
cations in the scene geometry where a character can conduct a
specific action. Gupta et al. [2011] produce a volume that occupies
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the character in various poses and fits this into a virtual Manhattan
world constructed from a photograph. Kim et al. [2014] propose to
make use of various geometric features of objects to fit character
poses to different geometries. Kang et al. [2014] analyze the open
volume and the physical comfort of the body to predict where the
character can be statically located with each pose. Savva et al. [2016]
capture human interactions with objects using the Microsoft Kinect
and produce statistical models which can be used for synthesizing
novel scenes. These approaches only handle static poses and do
not handle highly dynamic interactions. For animation purposes,
the smoothness of the motions and the connection of the actions
must be considered. Kapadia et al. [2016] estimate the contacts be-
tween the body and the environment during dynamic movements
and make use of them for fitting human movements into virtual
environments. Their method requires an in-depth analysis of the
geometry in advance which does not allow real-time interaction in
new environments the character may face for the first time. Our
technique is based on regression of the geometry to the motion and
so can overcome these limitations of previous methods.

Mapping User Parameters to Latent Variables. In many situations
people prefer to map scene parameters, such as viewpoints or light-
ing conditions in images, to latent variables such that users have con-
trol over them during synthesis. Kulkarni et al. [2015] propose a tech-
nique to map the viewpoint and lighting conditions of face images
to the hidden units of a variational autoencoder. Memisavic [2013]
proposes a multiplicative network where the latent variables (view-
point) directly parameterize the weights of the neural network. Such
a network is especially effective when the latent parameter has a
global effect on the entire output. We find this style of architecture is
applicable for locomotion and use the phase as a common parameter
between all types of locomotion, thus adopting a similar concept
for our system.

3 SYSTEM OVERVIEW
A visual diagram of the PFNN is shown in Fig. 2: it is a neural net-
work structure (denoted by Φ) where the weights are computed by
a periodic function of the phase p called the phase function (denoted
by Θ). The inputs x to the network include both the previous pose
of the character and the user control, while the outputs y include
the change in the phase, the character’s current pose, and some
additional parameters descibed later.
There are three stages to our system: the preprocessing stage,

training stage and the runtime stage. During the preprocessing
stage, we first prepare the training data and automatically extract
the control parameters that will later be supplied by the user (see
Section 4). This process includes fitting terrain data to the cap-
tured motion data using a separate database of heightmaps (see
Section 4.2). During the training stage, the PFNN is trained using
this data such that it produces the motion of the character in each
frame given the control parameters (see Section 5 for the setup of
the PFNN and its training) . During the runtime stage, the input
parameters to the PFNN are collected from the user input as well as
the environment, and input into the system to determine the motion
of the character (see Section 6).

4 DATA ACQUISITION & PROCESSING
In this section, we first describe about howwe do the motion capture
and extraction of control parameters which are used for training the
system (see Section 4.1). We then describe about how we fit terrain
to the motion capture data (see Section 4.2). Finally we summarize
the parameterization of the system (see Section 4.3).

4.1 Motion Capture and Control Parameters
Once the motion data is captured, the control parameters, which
include the phase of the motion, the semantic labels of the gait,
the trajectory of the body, and the height information of the ter-
rain along the trajectory, are computed or manually labeled. These
processes are described below.

Motion Capture. We start by capturing several long sequences of
locomotion in a variety of gaits and facing directions. We also place
obstacles, ramps and platforms in the capture studio and capture
further locomotion - walking, jogging and running over obstacles
at a variety of speeds and in different ways. We additionally capture
other varieties of locomotion such as crouching and jumping at
different heights and with different step sizes. Once finished we
have around 1 hour of raw motion capture data captured at 60 fps
which constitutes around 1.5 GB of data. An articulated body model
the same as the BVH version of the CMU motion capture data with
30 rotational joints is used with an additional root transformation
added on the ground under the hips.

Phase Labelling. Next the phasemust be labeled in the data, as this
will be an input parameter for the PFNN. This can be performed by
a semi-automatic procedure. Firstly, foot contact times are automati-
cally labeled by computing the magnitude of the velocity of the heel
and toe joints and observing when these velocities go below some
threshold [Lee et al. 2002]. Since this heuristic can occasionally fail,
the results are manually checked and corrected by hand. Once these
contact times are acquired the phase can be automatically computed
by observing the frames at which the right foot comes in contact
with the ground and assigning a phase of 0, observing the frames
when the left foot comes in contact with the ground and assign-
ing a phase of π , and observing when the next right foot contact
happens and assigning a phase of 2π . These are then interpolated
for the inbetween frames. For standing motions some minimum
cycle duration (∼0.25s) is used and the phase is allowed to cycle
continuously.

Gait Labels. We also provide semantic labels of the gait of the
locomotion to the system represented as a binary vector. This is
done for two reasons. Firstly they provide a method of removing
ambiguity, since a fast walk and slow jog can often have the same
trajectory, and secondly there are often times when the game de-
signer or the user wishes to observe specific motions in specific
scenarios (walking, jogging, jumping etc). This process is performed
manually but can be greatly simplified by ensuring during capture
that the actor does not change the gait type frequently and instead
long captures are made containing only a single type of gait.

Trajectory and Terrain Height. The root transformation of the
character is extracted by projecting center of the hip joints onto the
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Fig. 4. Results of fitting terrain to motion data. A variety of patches from
the separately acquired terrain database are fitted to the same motion.

ground below. The facing direction is computed by averaging the
vector between the hip joints and the vector between the shoulder
joints, and taking the cross product with the upward direction. This
direction is smoothed over time to remove any small, high-frequency
movements.

Once the trajectory of this root transformation has been extracted,
and terrain has been fitted to the motion (see Section 4.2), the height
of the terrain is computed at locations under the trajectory, as well
as at locations either side of the trajectory, perpendicular to the
facing direction and ∼25cm away from the center point (see Fig. 5).
More details about this process are described in Section 4.3.
Finally, once this process is completed, we create mirrored ver-

sions of all captures to double the amount of data.

4.2 Terrain Fitting
In order to produce a system where the character automatically
adapts to the geometry of the environment during runtime, we
need to prepare training data which includes the character moving
over different terrains. Since simultaneous capture of geometry and
motion in a motion capture studio is difficult, we instead present
an offline process that fits a database of heightmaps gathered from
video games or other virtual environments to separately captured
motion data. Once fitted, these terrains allow us to use parameters
relating to the geometry of the terrain as input to the control system.
Our database of heightmaps is extracted from several scenes

built using the Source Engine. We trace rays into these scenes from
above to capture the full geometric information in heightmap form
with a resolution of one pixel per inch. From these heightmaps
we randomly sample orientations and locations for approximately
20000 patches 3x3 meters in area. These patches are used in the
fitting process.

The fitting process takes place in two stages. Firstly, for each loco-
motion cycle in the motion data we find the 10 best fitting patches
in the database by searching in a brute-force way - attempting to
fit every patch and selecting the patches which minimize a given
error function. Secondly, we use a simple Radial Basis Function
(RBF) mesh editing technique to refine the result, editing the terrain
such that the feet of the character are exactly on the ground during
contact times.

Let us now describe the details of the fitting process. For each
motion cycle in the database, given the left/right heel and toe joint
indices J ∈ {lh rh lt rt}, we first compute for every frame i their
heights f lhi , f

rh
i , f

l t
i , f

r t
i , and contact labels clhi , c

rh
i , c

l t
i , c

r t
i (a bi-

nary variable indicating if the joint is considered in contact with
the floor or not). We find the average position of these joints for all
the times they are in contact with the floor and center each patch in
the database at this location. For each patch, we then compute the
heights of the terrain under each of these joints hlhi ,h

rh
i ,h

l t
i ,h

r t
i .

The fitting error Ef it is then given as follows:

Ef it = Edown + Eup + Eover (1)

where Edown ensures the height of the terrain matches that of the
feet when the feet are in contact with the ground,

Edown =
∑
i

∑
j ∈J

c
j
i (h

j
i − f

j
i )

2, (2)

Eup ensures the feet are always above the terrain when not in
contact with the ground (preventing intersections),

Eup =
∑
i

∑
j ∈J

(1 − c
j
i )max(hji − f

j
i , 0)

2, (3)

and Eover , which is only activated when the character is jumping
(indicated by the variable дjump

i ), ensures the height of the terrain
is no more than l in distance below the feet (in our case l is set to
∼30cm). This ensures that large jumps are fitted to terrains with
large obstacles, while small jumps are fitted to terrains with small
obstacles.

Eover =
∑
i

∑
j ∈J

д
jump
i (1 − c

j
i )max((f ji − l) − h

j
i , 0)

2. (4)

Once we have computed the fitting error Ef it for every patch
in the database we pick the 10 with the smallest fitting error and
perform the second stage of the fitting process. In this stage we edit
the heightmap such that the feet touch the floor when they are in
contact. For this we simply deform the heightmap using a simplified
version of the work of Botsch and Kobbelt [2005]. We apply a 2D
RBF to the residuals of the terrain fit using a linear kernel. Although
we use this method, any other mesh editing technique should also
be appropriate as the editing required in almost all cases is quite
minor.

Total data processing and fitting time for the whole motion data-
base is around three hours on an Intel i7-6700 3.4GHz CPU running
single threaded. Fig. 4 visualizes the results of this fitting process.

4.3 System Input/Output Parameters
In this section, we describe about the input/output parameters of our
system. For each frame i our system requires the phase p for com-
puting the network weights. Once these are computed the system
requires neural network input xi which includes the user control
parameters, the state of the character in the previous frame, and
parameters of the environment. From this it computes yi which
includes the state of the character in the current frame, the change
in phase, the movement of the root transform, a prediction of the
trajectory in the next frame, and contact labels for the feet joints
for use in IK post-processing.
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Fig. 5. A visualization of the input parameterization of our system. In pink
are the positions and velocities of character’s joints from the previous frame.
In black are the subsampled trajectory positions, directions and heights. In
yellow is the mesh of the character, deformed using the joint positions and
rotations output from our system.

Now let us describe the details of the input parameters xi . Our
parameterization is similar to that used in Motion Matching [Clavet
2016] and consists of two parts. For the state of the character we
take the positions and velocities of the character’s joints local to
the character root transform. For the user control we look at a local
window centered at frame i and examine every tenth surrounding
frame which, in our case, produces t = 12 sampled surrounding
frames covering 1 second of motion in the past and 0.9 seconds of
motion in the future. From each surrounding sampled frame we
extract a number of features including the character trajectory posi-
tion and trajectory direction local to the character root transform
at frame i , the character’s gait represented as a binary vector, and
the heights of the terrain under the trajectory and at two additional
points 25cm away to the left and right of the trajectory. See Fig. 5
for a visual demonstration of this parameterization.

The full parameterization of the input control variables for a sin-
gle frame i consists of a vector xi = { tpi tdi thi tдi jpi−1 jvi−1 } ∈ Rn

where tpi ∈ R2t are the subsampled window of trajectory positions
in the 2D horizontal plane relative to frame i , tdi ∈ R2t are the
trajectory directions in the 2D horizontal plane relative to frame i ,
thi ∈ R3t are the trajectory heights of the three left/right/center sam-
ple points relative to frame i , tдi ∈ R5t are the trajectory semantic
variables indicating the gait of the character and other information
(represented as a 5D binary vector), jpi−1 ∈ R3j are the local joint
positions of the previous frame, and jvi−1 ∈ R3j are the local joint
velocities of the previous frame, where j is the number of joints
(in our case 31). In this work, the individual components of the
additional semantic variables tдi are active when the character is
in the following situations: 1. standing, 2. walking, 3. jogging, 4.
jumping, 5. crouching (also used to represent the ceiling height).
The full parameterization of the output variables for a frame i

consists of a vector yi = { tpi+1 tdi+1 jpi jvi jai rxi rzi rai Ûpi ci } ∈ Rm

where tpi+1 ∈ R2t are the predicted trajectory positions in the next
frame, tdi+1 ∈ R2t are the predicted trajectory directions in the next

frame, jpi ∈ R3j are the joint positions local to the character root
transform, jvi ∈ R3j are the joint velocities local to the character
root transform, jai ∈ R3j are the joint angles local to the character
root transform expressed using the exponential map [Grassia 1998],
rxi ∈ R is the root transform translational x velocity relative to the
forward facing direction, rzi ∈ R is the root transform translational
z velocity relative to the forward facing direction, rai ∈ R is the root
transform angular velocity around the upward direction, Ûpi ∈ R is
the change in phase, and ci ∈ R4 are the foot contact labels (binary
variables indicating if each heel and toe joint is in contact with the
floor).

5 PHASE-FUNCTIONED NEURAL NETWORK
In this section we discuss the construction and training of the Phase-
Functioned Neural Network (PFNN). The PFNN (see Fig. 2) is a
neural network with weights that cyclically change according to
the phase value. We call the function which generates the network
weights the phase function, which in this work is defined as a cubic
Catmull-Rom spline for reasons outlined in Section 5.2. To begin we
first describe the chosen neural network structure (see Section 5.1),
followed by the phase function used to generate the weights for this
network structure (see Section 5.2). Finally, we describe about the
training procedure (see Section 5.3).

5.1 Neural Network Structure
Given input parameters x ∈ Rn , output parameters y ∈ Rm , and a
single phase parameter p ∈ R described in Section 4.3 we start by
building a simple three layer neural network Φ as follows:

Φ(x;α ) =W2 ELU( W1 ELU( W0 x + b0) + b1) + b2, (5)

where the parameters of the network α are defined by α = {W0 ∈

Rh×n ,W1 ∈ Rh×h ,W2 ∈ Rm×h , b0 ∈ Rh , b1 ∈ Rh , b2 ∈ Rm }. Here
h is the number of hidden units used on each layer which in our
work is set to 512 and the activation function used is the exponential
rectified linear function [Clevert et al. 2015] defined by

ELU(x) = max(x , 0) + exp(min(x , 0)) − 1. (6)

5.2 Phase Function
In the PFNN, the network weights α are computed each frame by a
separate function called the phase function, which takes as input the
phase p and parameters β as follows: α = Θ(p; β). Theoretically,
there are many potential choices for Θ. For example Θ could be a
another neural network, or a Gaussian Process, but in this work we
choose Θ to be a cubic Catmull-Rom spline.

Using a cubic Catmull-Rom spline is good for several reasons - it
is easily made cyclic by letting the start and end control points be
the same, the number of parameters is proportional to the number
of control points, and it varies smoothly with respect to the input
parameter p. Choosing a cubic Catmull-Rom spline to represent
the phase function means each control point αk represents a cer-
tain configuration of weights for the neural network α , and the
function Θ performs a smooth interpolation between these neural
network weight configurations. Another way to imagine Θ is as a
one-dimensional cyclic manifold in the (high-dimensional) weight
space of the neural network. This manifold is then parameterized
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by the phase, and in this sense training the network is finding an
appropriate cyclic manifold in the space of neural network weights
which performs the regression from input parameters to output
parameters successfully.

We found a cyclic spline of only four control points was enough
to express the regression required by this system. Given four control
points (consisting of neural network weight configurations) β =
{α0 α1 α2 α3}, the cubic Catmull-Rom spline function Θ which
produces network weights for arbitrary phase p can be defined as
follows:

Θ(p; β) = αk1

+w ( 12αk2 −
1
2αk0 )

+w2( αk0 −
5
2αk1 + 2αk2 −

1
2αk3 )

+w3( 32αk1 −
3
2αk2 +

1
2αk3 −

1
2αk0 )

w =
4p
2π

(mod 1)

kn =

⌊
4p
2π

⌋
+ n − 1 (mod 4).

(7)

5.3 Training
For each frame i the variables xi , yi , and the phases pi are stacked
into matrices X = [ x0 x1 ... ], Y = [ y0 y1 ... ] and P = [ p0 p1 ... ].
The mean values xµ yµ and standard deviations xσ yσ are used
to normalize the data which is then additionally scaled by weights
xw yw which give the relative importances of each dimension: in
our experiments the best results are achieved by scaling all input
variables relating to the joints by a value of 0.1 to shrink their
importance. This increases the influence of the trajectory in the
regression, resulting in a more responsive character. The binary
variables included in the input are normalized as usual and don’t
recieve any special treatment. After the terrain fitting is complete
and the final parameterization is constructed for each of the 10
different associated patches, we have a final dataset that contains
around 4 million data points.
To train the network we must ensure that for a given set of

control parameters X and phase parameters P, we can produce the
corresponding output variablesY as a function of the neural network
Φ. Training is therefore an optimization problem with respect to the
phase function parameters β = {α0 α1 α2 α3} and the following
cost function:

Cost(X,Y, P; β) = ∥Y − Φ(X;Θ(P; β))∥ + γ |β |. (8)

In this equation the first term represents the mean squared error
of the regression result, while the second term represents a small
regularization which ensures the weights do not get too large. It
also introduces a small amount of sparsity to the weights. This term
is controlled by the constant γ , which in this work is set to 0.01.

We use the stochastic gradient descent algorithm Adam [Kingma
and Ba 2014] with a model implemented in Theano [Bergstra et al.
2010] which automatically calculates the derivatives of the cost
function with respect to β . Dropout [Srivastava et al. 2014] is applied

with a retention probability of 0.7 and the model is trained in mini-
batches of size 32. Full training is performed for 20 epochs which
takes around 30 hours on a NVIDIA GeForce GTX 660 GPU.

6 RUNTIME
During runtime the PFNN must be supplied at each frame with the
phase p and neural network input x. The phase p can be stored
and incremented over time using the computed change in phase
Ûp, modulated to loop in the range 0 ≤ p ≤ 2π . For the neural
network input x, the variables relating to the joint positions and
velocities are used in an autoregressive manner, using the computed
result from the previous frame as input to the next. Our system also
uses past/future trajectories tp td as input x (see Section 4.3): the
elements related to the past are simply recorded, while some care is
required for those of the future, which we discuss next.

Inputs Relating to Future Trajectories. When preparing the runtime
input x for PFNN, the future elements of the trajectory tp td are
computed by blending the trajectory estimated from the game-pad
control stick and those generated by the PFNN in the previous frame.

In Motion Matching, Clavet [2016] uses the position of the stick
to describe the desired velocity and facing direction of the character.
In our method this desired velocity and facing direction is then
blended at each future frame with the velocity and facing direction
predicted by the PFNN in the previous frame (tpi+1 tdi+1). To do this
we use the blending function specified below:

TrajectoryBlend(a0, a1, t ,τ ) = (1 − tτ ) a0 + tτ a1, (9)

where t ranges from 0 to 1 as the trajectory gets further into the
future, and τ represents an additional bias that controls the respon-
siveness of the character. In the results shown in this paper we set
the bias for blending velocities τv to 0.5, which results in blending
function which biases toward the PFNN predicted velocities, and
the bias for blending facing directions τd to 2.0, which results in
a bias toward the facing direction of the game-pad stick. This pro-
duces a character which looks natural yet remains responsive, as
most perceived responsiveness comes from when the character is
responding quickly to changes in the desired facing direction.

Also included in the future trajectory are variables related to the
semantic information of the motion tд . This includes the desired
gait of the character (represented as a binary vector) as well as other
information such as the height of the ceiling and if the character is
required to jump instead of climb. These are all set either by user
interaction (e.g. we use the right shoulder button of the game-pad to
indicate the gait should switch to a jog), or by checking the location
of the trajectory against elements of the environment (e.g. when
the trajectory passes over certain areas the variable indicating a
jumping motion is activated).
Once the variables relating to the future trajectory have been

found, the final step is to project the trajectory locations vertically
onto the scene geometry and extract the heights to prepare th . This
constitutes all the required input variables for the PFNN, at which
point the output y can be computed.

Given the output y the final joint transformations are computed
from the predicted joint positions and angles jp , ja . These joint
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Fig. 6. Results showing the character traversing a planar environment. By
adjusting the future trajectory position and direction the user can make the
character turn and sidestep.

transforms are then edited to avoid foot sliding using a simple two-
joint IK along with the contact labels c. The root transform position
and rotation is updated using the predicted root translational and
rotational velocities rx , rz , ra . This completes the runtime process
for an individual frame.

Precomputation of the Phase Function: Once trained, the PFNN is
extremely compact, requiring ∼ 10 megabytes to store the variables
β . Yet the phase function Θ may require almost a millisecond of
time to compute, which in some cases can be too slow. Because the
phase function Θ is a one-dimensional function over a fixed domain
0 ≤ p ≤ 2π it is possible to avoid computation of Θ at runtime by
precomputing Θ offline for a number of fixed intervals in the range
0 ≤ p ≤ 2π and interpolating the results of this precomputation at
runtime.

Several options of precomputation are available offering different
trade offs between speed and memory consumption (See Table 1).
The constant method is to precompute Θ for n = 50 locations along
the phase space and at runtime simply use the neural network
weights at the nearest precomputed phase location. This increases
the memory consumption by n

4 times, but effectively removes the
computation of Θ entirely. Alternately, n = 10 samples can be taken
and a piecewise linear interpolation performed of these samples.
This approach requires less memory and may be more accurate but
the piecewise linear interpolation also requires more computation
time. Alternately the full cubic Catmull-Rom spline can be evaluated
at runtime.

Fig. 7. Results showing the character crouching as the variable indicating
the ceiling height is adjusted by the environment.

Fig. 8. Results showing the character performing jumping motions over
obstacles that have been labeled to indicate jumping should be performed.

7 RESULTS
In this section we show the results of our method in a number of
different situations. For a more detailed demonstration the readers
are referred to the supplementary material. All results are shown
using the constant approximation of the phase function.

In Fig. 6 we show our method applied to a character navigating a
planar environment performing many tight turns, changes in speed,
and facing directions. Our system remains responsive and adapts
well to the user input, producing natural, high quality motion for a
range of inputs.
In Fig. 1 we show the results of our method applied to a charac-

ter navigating over rough terrain. Our character produces natural
motion in a number of challenging situations, stepping, climbing
and jumping where required.

In Fig. 7 we show our method applied in an environment where
the ceiling is low such that the character must crouch to proceed.
By adjusting a semantic variable in tд relating to the height of the
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Fig. 9. Result of the character where the future trajectory has been collided
with walls, pits and other objects in the environment. By colliding the future
trajectory with non-traversable objects the character will slow down or
avoid such obstacles. When walking along the beam, since the measured
heights on either side of the character are significantly lower than in the
center, a balancing motion is naturally produced.

ceiling, either using the environment or the game-pad, the character
will crouch at different heights.

Sometimes the game designer wants the character to traverse the
environment in a different way. By adjusting a different semantic
variable in tд we can get the character to jump over obstacles instead
of climb over them, as shown in Fig. 8.

By colliding the future trajectorywithwalls or other untraversable
objects we can get the character to slow down and avoid obstacles.
Alternately the character can be forced into certain environments to
create specific movements such as balancing on a beam, as demon-
strated in the urban environment shown in Fig. 9.

8 EVALUATION
In this section we compare our method to a number of other tech-
niques including a standard neural network where the phase is not
given as an input (see Fig. 10(a)), a standard neural network where
the phase is given as an additional input variable (see Fig. 10(b)),
a Encoder-Recurrent-Decoder (ERD) network [Fragkiadaki et al.
2015] (see Fig. 10(c),(d)), an autoregressive Gaussian Process trained
on a subset of the data (see Fig. 10(e)) and a similarly structured
Gaussian Process approach which builds separate regressors for 10

Technique Training Runtime Memory
PFNN cubic 30 hours 0.0018s 10 MB
PFNN linear 30 hours 0.0014s 25 MB
PFNN constant 30 hours 0.0008s 125 MB
NN (a) (b) 3 hours 0.0008s 10 MB
ERD (c) (d) 9 hours 0.0009s 10 MB
GP (e) 10 minutes 0.0219s 100 MB
PFGP (f) 1 hour 0.0427s 1000 MB

Table 1. Numerical comparison between our method and other methods
described in Fig. 10.

Fig. 10. The configurations of neural network structures and Gaussian
process structures evaluated in our comparison: (a) NN without the phase
given as input, (b) NNwith the phase given as an additional input variable, (c)
an ERD network, (d) an ERD network with the phase given as an additional
input variable, (e) a GP autoregressor, and (f) a GP autoregressor that is
selected using the phase.

Fig. 11. Results of using a neural network where the phase is given as
an additional input. The character motion appears stiff and unnatural as
the input relating to the phase is often ignored by the network and other
variables used to infer the pose instead.

different locations along the phase space (see Fig. 10(f)). All neural
network approaches are trained until convergence and the number
of weights in each network adjusted such that the memory usage is
equal to our method to provide a fairer comparison.
We show that each of these models fails to produce the same

high quality motion seen in our technique and additionally some
have fundamental issues which make them difficult to train and
use effectively on motion data. We also include a performance com-
parison detailing training time, runtime cost and memory usage.
We then evaluate our data-driven terrain fitting model - comparing
the results to a simple procedural model that fits a basic surface to
the footstep locations. Finally, we evaluate the responsiveness and
following ability of our system by adjusting the blending method of
the future trajectory and measuring how these changes affect the
results.

Standard Neural Network. When using a neural network that does
not explicitly provide the phase as an input (see Fig. 10, (a)), the
system will blend inputs of different phases which results in poses
from different phases being averaged and the character appearing
to float [Holden et al. 2016]. As our system only blends data at the
same phase it does not suffer from such issues.
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Fig. 12. The Phase Functioned Gaussian Process (PFGP) achieves an effect
similar to our method, but the quality of the produced motion and the
computational costs are much worse since it cannot learn from as much
data.

In an attempt to avoid such erroneous blending it is possible to
explicitly provide the phase as an additional input variable to the
neural network (see Fig. 10, (b)). During training the influence of
the phase is in some cases ignored and the other variables end up
dominating the prediction, causing the motion to appear stiff and
unnatural (see Fig. 11 and supplementary video). This effect can be
partially explained by the usage of dropout [Srivastava et al. 2014],
which is an essential procedure for regularization, where input
nodes are randomly disabled to make the system robust against
over-fitting and noise. As the input variable relating to the phase
is often disabled during dropout, the system attempts to dilute its
influence where possible, instead erroneously learning to predict
the pose from the other input variables. To verify this theory we
measure the change in output y with respect to the change in phase
∥
δy
δp ∥ in each network. In the standard neural network with the

phase given as an additional input this value is relatively small
(∼ 0.001), while in the PFNN, as the phase is allowed to change all of
the network weights simultaneously, it is around fifty times larger
(∼ 0.05). While it is possible to rectify this somewhat by reducing
dropout just for the phase variable, or including multiple copies
of the phase variable in the input, these techniques provide a less
elegant solution and weaker practical guarantee compared to the
full factorization performed by our method.

Encoder-Recurrent-Decoder Network. Next, we compare our sys-
tem against the Encoder-Recurrent-Decoder (ERD) Network [Fragki-
adaki et al. 2015] - one of the current state-of-the-art neural network
techniques which is a variant of the RNN/LSTM network structure
(see Fig. 10 (c)). The ERD network is produced by taking Φ and
making the middle transformation into an LSTM recurrent transfor-
mation. Although this structure is not identical to previous versions
of the ERD network, the nature of the construction is the same.
As the ERD network has a memory, even when the phase is

not given directly, it can learn some concept of phase from the
observable data and use this to avoid the issue of ambiguity in the
input. The ERD network conducts the recurrent process on the
manifold of the motion (middle layer), thus significantly delaying
the time that the “dying out” process starts [Fragkiadaki et al. 2015].

Unfortunately some pathological cases still exist - for example if
the character is standing still and the user indicates for the character
to walk, as it is impossible to observe the phase when the character
is stationary, the ERD network cannot know if the user intends for

the character to lead with their left foot or their right, resulting
in an averaging of the two, and a floating effect appearing. In this
sense the phase cannot be learned in all cases, and is a hidden latent
variable which must be supplied independently as in our method.

Providing the phase as an additional input to this network (see
Fig. 10 (d)) can improve the generation performance significantly
but still does not entirely remove the floating artefacts (see supple-
mentary video).

Autoregressive Gaussian Processes. Gaussian Processes (GP) have
been applied to autoregressive problems with some success in pre-
vious work [Wang et al. 2008]: here we compare our approach with
respect to two architectures based on GP.
Firstly, we use a GP to perform the regression from x to y with

phase given as an additional input (see Fig. 10 (e)): this can be consid-
ered similar to a Gaussian Process Dynamic Model (GPDM) [Wang
et al. 2008] if you consider the input control parameters to be the
latent variables, which in this case are hand-tuned instead of auto-
matically learned. Since it is difficult to avoid the GP over-fitting on
the small amount of data it is provided, the system becomes unstable
and jittery (see supplementary video). Additionally, the GP cannot
adapt to many complex situations since the cost of construction
grows in the square order for memory and cubic order for compu-
tational cost. Thus, we could only test this system for motions on
a planar surface, limiting the training samples to 3,000. Still, it has
bad runtime performance and memory costs on large data sets.

Next, we build several independent GPs for 10 different locations
along the phase space, selecting the nearest two GPs to perform the
regression at runtime and interpolating the result (see Fig. 10(f)).
Practically this achieves an effect similar to the PFNN but we find
the quality of this regression as well as the memory and runtime
performance to be much worse as it cannot be trained on nearly as
much data (see Fig. 12).

Performance. In Table 1 we compare the performances of the vari-
ous methods shown above includingmemory usage and runtime. GP
based techniques are limited by their data capacity, memory usage,
and runtime performance. When using the constant approximation
our method has comparable runtime performance to other neural
network based techniques but with a higher memory usage. When
using the full cubic Catmull-Rom spline interpolation of the phase
function it has similar memory usage but with a longer runtime.
One downside of our method is that it requires longer training times
than other methods. All runtime measurements were made using
an Intel i7-6700 3.4GHz CPU running single threaded.

Terrain Fitting. In Fig. 13 we show a comparison to a different
terrain fitting process. In this process we start with a flat plane and
use the mesh editing technique described in Section 4.2 to deform
the surface to touch the footstep locations. Terrain synthesized in
such a way are smooth and without much variation. As a result
of over-fitting to such smooth terrains the system produces odd
motions during runtime when the character encounters environ-
ments such as those with large rocks. The readers are referred to
the supplementary material for further details.

Responsiveness. In Fig. 14 we show an evaluation of the respon-
siveness and following ability of our method. We create several
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Fig. 13. Comparison of terrain fitting approaches. Simple mesh editing
(left) creates a basic surface which touches the footstep locations. In this
case the system over-fits to the style of terrains produced by this technique
and produces odd motions when terrains unobserved during training are
encountered at runtime. Our method (right) uses similar terrains to those
encountered at runtime therefore producing more natural motion.

Fig. 14. Evaluation of the responsiveness of our method. The character is
directed to follow several predefined paths and the difference between the
desired path and actual path made by the character is measured.

Path τv τd Avg. Error

Wave
0.5 2.0 17.29 cm
2.0 5.0 10.66 cm
5.0 10.0 8.88 cm

Square
0.5 2.0 21.26 cm
2.0 5.0 11.25 cm
5.0 10.0 8.17 cm

Circle
0.5 2.0 13.70 cm
2.0 5.0 8.03 cm
5.0 10.0 5.82 cm

Table 2. Numerical evaluation of character responsiveness and following
ability. For each scene in Fig. 14 we measure the average error between the
desired path and that taken by the character with different biases supplied
to the future trajectory blending function Eq. (9). Here τv represents the
blending bias for the future trajectory velocity, and τd represents the blend-
ing bias for the future trajectory facing direction (see Section 6 for a more
detailed explanation).

predefined paths and instruct the character to follow them. We then
measure the difference between the desired trajectory and the actual
trajectory of the character (see Table 2). By increasing the variable
τ (described in Section 6) responsiveness can be improved at the
cost of a small loss in animation quality. The readers are referred to
the supplementary material for further details.

9 DISCUSSIONS
In this section, we first discuss about the network architecture that
we adopt, and also about the input/output parameters of the system.
Finally we discuss about the limitations of our system.

Network Architecture. As shown in our experiments, our system
can compute realistic motions in a time-series manner, without suf-
fering from issues such as dying out or instability which often occur
in autoregressive models. This is made possible through several sys-
tem design decisions. By using the phase as a global parameter for
the weights of the neural network we can avoid mixing motions at
different phases which notoriously results in the “dying out” effect.
This also ensures the influence of the phase is strongly taken into
account during training and runtime, and thus there is little chance
that its influence is diluted and ignored, something we observed
when giving the phase as an additional input parameter to other
network structures.
Our network is composed of one input layer, one output layer,

and two hidden layers with 512 hidden units. This design is mo-
tivated by the wish to make the network as simple as possible to
ensure the desired motion can be computed easily for our real-time
animation purpose. We find the current network structure is a good
compromise between computational efficiency and the richness of
the movements produced.

While we only demonstrate the PFNN applied to cyclic motions, it
can just as easily be applied to non-cyclic motions by adopting a non-
cyclic phase function. In non-cyclic data the phase can be specified
as 0 at the start of the motion, 0.5 half way through and 1.0 at the
end. If trained with a non-cyclic phase function and appropriate
control parameters, the PFNN could easily be used on other tasks
such as punching and kicking.

Conceptually, our system is similar to training separate networks
for each phase. This is something we tried in early iterations of
our research, but when doing so each network learned a slightly
different regression due to the random weight initialization and
other factors. There was therefore no continuity or cyclic nature
preserved and the motion looked jittery, with a noticeable “seam”
when the phase looped around. The PFNN provides an elegant way
of achieving a similar effect but without the stated problems.

Control Parameters for Real-time Character Control. Our system
is designed specifically for real-time character control in arbitrary
environments that can be learned from motion capture data: for
this purpose we use an input parameterization similar to one that
has proven to be effective in Motion Matching [Clavet 2016]. The
future trajectory is predicted from the user inputs while the input
related to the environment is found by sampling the heights of the
terrain under the trajectory of the character. Using a window of past
and future positions, directions, and geometry reduces the potential
for ambiguity and produces higher quality motion. For additional
tasks it should be possible to adapt this input parameterization, for
example to include extra input variables related to the style of the
motion.

Other Potential Parameterization. Deep Learning has found that
it is possible to use input parameterizations which are not hand
crafted in this way but use more neural network layers to perform
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Fig. 15. If the input trajectory is unachievable such as when the terrain
is too steep our approach will extrapolate which can often produce bad
looking motion.

the abstraction. For example - it is possible for our purposes to use a
depth or RGB image of the surrounding terrain as the input relating
to the environment and use convolutional layers for abstracting this
input. This is an interesting approach and may be a good solution
especially for robotics, where the actions are limited and the details
of the ground are needed for keeping balance. In the early stages of
our research we tested an approach similar to this, but noticed a few
issues. Firstly, using a CNN required a lot more training data as we
found that the character does not interact with any terrain along the
sides of the images, meaning we needed a large variety of different
images to prevent over-fitting in these places. We also found that
when using convolutional layers or more complex neural network
structures to abstract the input the processing time increased to a
point where it became unsuitable for real-time applications such as
computer games.

Limitations & Future Work. In order to achieve the real-time per-
formance we only coarsely sample points along the trajectory. This
results in the system missing some high resolution details such as
sharp small obstacles along the terrain, which need to be avoided
in actual applications. One simple solution is to have an additional
layer of control on top of the current system to respond to labeled
obstacles, while using our system for low frequency geometry of
the environment.
Like many methods in this field our technique cannot deal well

with complex interactions with the environment - in particular if
they include precise hand movements such as climbing up walls or
interacting with other objects in the scene. In the future labeling
hand contacts and performing IK on the hands may help this issue
partially. Alternately, performing the regression in a space more
naturally suited to interactions such as that defined by relationship
descriptors [Al-Asqhar et al. 2013] may be interesting and produce
compelling results.

The PFNN is relatively slow to train as each element in the mini-
batch produces different network weights meaning the computation
during training is much more expensive than usual. The PFNN can
produce acceptable results for testing after just a couple of hours
of training, but performing the full 30 hour training each time new
data is added is not desirable. For this reason we are interested in
ways to speed up the training of the PFNN or ways of performing
incremental training.

If the user supplies an input trajectory which is unachievable or
invalid in the given context (e.g. the terrain is too steep) our system
will extrapolate which may produce undesirable results (see Fig. 15).

Additionally the results of our method may be difficult to predict,
and therefore hard for artists to fix or edit. A dedicated method
for editing and controlling the results of techniques such as ours is
therefore desirable.

Another futurework can be applying our framework for physically-
based animation. For example, it will be interesting to learn a non-
linear version of a phase-indexed feedback model [Liu et al. 2016] in
addition to a feedforward controller. Such a system may allow the
character to stably walk and run over terrains in different physical
conditions such as slippery floors, or unstable rope bridges.
Finally, it is also interesting to apply our technique for other

modalities, such as videos of periodic data e.g. fMRI images of heart-
beats. Using a periodic model such as the PFNN can potentially
make the learning process more efficient for such kinds of data.

10 CONCLUSION
We propose a novel learning framework called a Phase-Functioned
Neural Network (PFNN) that is suitable for generating cyclic be-
havior such as human locomotion. We also design the input and
output parameters of the network for real-time data-driven charac-
ter control in complex environments with detailed user interaction.
Despite its compact structure, the network can learn from a large,
high dimensional dataset thanks to a phase function that varies
smoothly over time to produce a large variation of network config-
urations. We also propose a framework to produce additional data
for training the PFNN where the human locomotion and the envi-
ronmental geometry are coupled. Once trained our system is fast,
requires little memory, and produces high quality motion without
exhibiting any of the common artefacts found in existing methods.
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