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Figure 1: Our framework allows the animator to synthesize character movements automatically from given trajectories.

Abstract

We present a framework to synthesize character movements based
on high level parameters, such that the produced movements re-
spect the manifold of human motion, trained on a large motion cap-
ture dataset. The learned motion manifold, which is represented by
the hidden units of a convolutional autoencoder, represents motion
data in sparse components which can be combined to produce a
wide range of complex movements. To map from high level param-
eters to the motion manifold, we stack a deep feedforward neural
network on top of the trained autoencoder. This network is trained
to produce realistic motion sequences from parameters such as a
curve over the terrain that the character should follow, or a target
location for punching and kicking. The feedforward control net-
work and the motion manifold are trained independently, allowing
the user to easily switch between feedforward networks according
to the desired interface, without re-training the motion manifold.
Once motion is generated it can be edited by performing optimiza-
tion in the space of the motion manifold. This allows for imposing
kinematic constraints, or transforming the style of the motion, while
ensuring the edited motion remains natural. As a result, the system
can produce smooth, high quality motion sequences without any
manual pre-processing of the training data.

Keywords: deep learning, convolutional neural networks, autoen-
coder, human motion, character animation, manifold learning

Concepts: •Computing methodologies→Motion capture;

1 Introduction

Data-driven motion synthesis allows animators to produce con-
vincing character movements from high level parameters. Such
approaches greatly help animation production as animators only
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need to provide high level instructions rather than low level details
through keyframes. Various techniques that make use of large mo-
tion capture datasets and machine learning to parameterize motion
have been proposed in computer animation.

Most data-driven approaches currently available require a signifi-
cant amount of manual data preprocessing, including motion seg-
mentation, alignment, and labeling. A mistake at any stage can
easily result in a failure of the final animation. Such preprocess-
ing is therefore usually carefully performed through a significant
amount of human intervention, making sure the output movements
appear smooth and natural. This makes full automation difficult
and so often these systems require dedicated technical developers
to maintain.

In this paper, we propose a model of animation synthesis and edit-
ing based on a deep learning framework, which can automatically
learn an embedding of motion data in a non-linear manifold using a
large set of human motion data with no manual data preprocessing
or human intervention. We train a convolutional autoencoder on a
large motion database such that it can reproduce the motion data
given as input, as well as synthesize novel motion via interpola-
tion. This unsupervised non-linear manifold learning process does
not require any motion segmentation or alignment which makes the
process significantly easier than previous approaches. On top of
this autoencoder we stack another feedforward neural network that
maps high level parameters to low level human motion, as repre-
sented by the hidden units of the autoencoder. With this, users can
easily produce realistic human motion sequences from intuitive in-
puts such as a curve over some terrain that the character should fol-
low, or the trajectory of the end effectors for punching and kicking.
As the feedforward control network and the motion manifold are
trained independently, users can easily swap and re-train the feed-
forward network according to the desired interface. Our approach
is also inherently parallel, which makes it very fast to compute and
a good fit for mainstream animation packages.

We also propose techniques to edit the motion data in the space
of the motion manifold. The hidden units of the convolutional au-
toencoder represent the motion in a sparse and continuous fashion,
such that adjusting the data in this space preserves the naturalness
and smoothness of the motion, while still allowing complex move-
ments of the body to be reproduced. One demonstrative example of
this editing is to combine the style of one motion with the timing
of another by minimizing the difference in the Gram matrices of
the hidden units of the synthesized motion and that of the reference
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style motion [Gatys et al. 2015].

In summary, our contribution is the following:

• A fast, parallel deep learning framework for synthesizing
character animation from high level parameters.

• A method of motion editing on the motion manifold for satis-
fying user constraints and transforming motion style.

2 Related Work

We first review kernel-based methods for motion synthesis, which
have been the main technique for synthesizing motions via blending
motion capture data. We next review methods of interactive char-
acter control, where user instructions are applied for synthesizing
novel motion using a motion database. Finally, we review meth-
ods in deep learning and how they have been applied to character
animation.

Kernel-based Methods for Motion Blending Radial-basis
functions (RBFs) are effective for blending multiple motions of the
same class. Rose et al. [1998] call the motions of the same class
“verbs” and interpolate them using RBFs according to the direc-
tion that the character needs to move toward, or reach out. Rose
et al. [2001] show an inverse kinematics usage of RBFs by map-
ping the joint positions to the posture of the character. To make the
blended motion appear plausible, motions need to be categorized
and aligned along the timeline. Kovar and Gleicher [2004] auto-
mate this process by computing the similarity of the movements
and aligning them using dynamic time warping. However, RBF
methods can easily overfit to the data due to the lack of mechanism
for handling noise and variance. Mukai and Kuriyama [2005] over-
come this issue by using Gaussian Processes (GP), where the meta-
parameters are optimized to fit the model to the data. Grochow et
al. [2004] apply Gaussian Process Latent Variable Model (GPLVM)
to map the motion data to a low dimensional space such that anima-
tors can intuitively control the characters. Wang et al. [2005] apply
GPLVM for time-series motion data - learning the posture in the
next frame given the previous frames. Levine et al. [2012] apply
reinforcement learning in the space reduced by GPLVM to com-
pute the optimal motion for tasks such as locomotion, kicking and
punching.

Kernel-based methods such as RBF and GP suffer from large mem-
ory cost. Therefore, the number of motions that can be blended is
limited. Our approach does not have such a limitation and can scale
to huge sets of training data.

Interactive Character Control For interactive character control,
a mechanism to produce a continuous motion based on the high
level commands is required. Motion graphs [Arikan and Forsyth
2002; Lee et al. 2002; Kovar et al. 2002] are an effective data struc-
ture for such a purpose. Motion graphs are automatically computed
from a large set of motion capture data. As motion graphs only re-
play captured motion data, techniques to blend motions in the same
class are proposed to enrich the dataset [Min and Chai 2012; Heck
and Gleicher 2007; Safonova and Hodgins 2007; Shin and Oh 2006;
Levine et al. 2012].

Many of the methods that apply motion blending for motion syn-
thesis during interactive character control require the motions to be
classified, segmented and aligned to produce a rich model of each
motion class. Poses from different times or different classes must
not be mixed. Although Kovar and Gleicher [2004] try to automate
this process, the choice of the distance metric between motions and

segmentation criteria of the motion sequence can significantly af-
fect the performance and the accuracy. The requirement of explic-
itly conducting these steps can be a bottleneck of their performance.
On the contrary, our unsupervised framework automatically blends
nearby motions for synthesizing realistic movements, without any
requirement of motion segmentation and classification.

For finding the best action at each time step following user instruc-
tion, techniques based on reinforcement learning are applied [Lee
and Lee 2004; Safonova and Hodgins 2007; Lee et al. 2010; Levine
et al. 2012]. Reinforcement learning requires a huge amount of
precomputation which increases exponentially with respect to the
number of actions available to the character. For this reason, meth-
ods such as motion fields [Lee et al. 2010] quickly become in-
tractable as the amount of data and the number of control param-
eters grow, and various additional techniques need to be used to
reduce the number of states. For example, Levine et al. [2012] clas-
sify the motion dataset into different classes in advance and reduce
the dimensionality within each motion class. We avoid using re-
inforcement learning and directly regress the high level commands
given by the user to the low level motion features. Such a mapping
is computed by stochastic gradient descent and does not grow with
respect to the number of control parameters such as in reinforce-
ment learning.

Deep learning for Motion Data Techniques based on deep learn-
ing are currently the state-of-the-art in the area of image and speech
recognition [Krizhevsky et al. 2012; Graves et al. 2013]. Recently,
there is a huge interest in applying deep learning techniques for syn-
thesizing novel data from the learned model [Vincent et al. 2010;
Goodfellow et al. 2014]. One important strength of frameworks
based on deep learning is that they automatically learn the features
from the dataset. For example, when convolutional neural networks
(CNN) are applied to image recognition, filters similar to Gabor fil-
ters appear at the bottom layers, and more complex filters that cor-
respond to different objects appear in the higher level layers [Zeiler
and Fergus 2014]. One of our main interests is to make use of such
a strength for character animation.

Deep learning and neural networks are also attracting the inter-
ests of the control community in applications such as robotics and
physically-based animation. Allen and Faloutsos [2009] use the
NEAT algorithm, that evolves the topology of the neural network
for controlling bipedal characters. Tan et al. [2014] apply this tech-
nique for control of bike stunts. Levine and Vladlen [2014] learn
the optimal control policies using neural networks and apply it to
bipedal gait control. Mordatch et al. [2015] apply a recurrent neu-
ral network (RNN) to learn a near-optimal feedback controller for
articulated characters. While these approaches learn the dynamics
for controlling characters in a physical environment, our focus is
on learning features from captured human motion data and apply-
ing them for animation production.

There have been a few approaches to apply deep learning to hu-
man motion capture data. Du et al. [2015] construct a hierarchical
RNN using a large motion dataset from various sources and show
their method achieves a state-of-the-art recognition rate. Holden
et al. [2015] apply a convolutional autoencoder to the CMU motion
capture database and show the learned representation achieves good
performance in tasks such as motion retrieval.

In terms of motion synthesis, Taylor et al. [2009; 2011] apply
conditional Restricted Boltzmann Machines (cRBM) for synthe-
sizing gait animation. Mittelman et al. [2014] use the spike-and-
slab version of the recurrent temporal RBM to improve the recon-
struction. Fragkiadaki et al. [2015] introduce Encoder-Recurrent-
Decoder (ERD) networks, a type of RNN that combines representa-
tion learning with learning temporal dynamics, and produce smooth



Figure 2: The outline of our method. High level parameteriza-
tions are disambiguated and used as input to feed forward neural
networks. These networks produce motion in the space of the hid-
den units of a convolutional autoencoder which can be further used
to edit the generated motion.

interpolated movements while reducing drifting. These are time-
series approaches, where computing the entire motion requires in-
tegration from the first frame. We find this framework is not very
suitable for the purpose of animation production as animators wish
to see the entire motion at once and then sequentially apply mi-
nor edits while revising the motion. They do not wish to see edits
happening at early frames being propagated into the future, which
will be the case when time-series approaches are adopted. For this
reason, in this paper we adopt and improve on the convolutional
autoencoder representation [Holden et al. 2015] which can produce
motion at once, in parallel, without performing any integration pro-
cess.

3 System Overview

The outline of the system is shown in Fig. 2. Using data from a
large human motion database (see Section 4), a convolutional au-
toencoder is trained and thus a general motion manifold is found
(green box in Fig. 2, see Section 5). After this training, motion can
be represented by the hidden units of the network. Given this repre-
sentation, a mapping is produced between high level control param-
eters and the hidden units via a feedforward neural network stacked
on top of the convolutional autoencoder (orange box in Fig. 2, see
Section 6). The high level control parameters shown in this work
are the trajectory of the character over the terrain and the move-
ment of the end effectors. As these parameterizations can contain
ambiguities, another small network is used to compute parameters
which disambiguate the input (red box in Fig. 2, see Section 6.3).
Just the subset of the motion capture data relevant to the task is
used to train these feedforward networks. Using this framework,
the user can produce an animation of the character walking and
running by drawing a curve on the terrain, or the user can let the
character punch and kick by specifying the trajectories of the hands
and feet. Once a motion has been generated, it can be edited in the
space of hidden units, such that the resulting motion satisfies con-
straints such as positional constraints for foot-skate cleanup (see
Section 7.1). Using this technique we describe a method to trans-
form the style of the character motion using a short stylized clip as
a reference (Section 7.2).

4 Data Acquisition

In this section we describe our construction of a large motion
database suitable for deep learning.

4.1 The Motion Dataset for Deep Learning

We construct a motion dataset for deep learning by collecting many
freely available large online databases of motion capture [CMU ;
Müller et al. 2007; Ofli et al. 2013; Xia et al. 2015], as well as
adding data from our internal captures, and retargeting them to a
uniform skeleton structure with a single scale and the same bone
lengths. The retargeting is done by first copying any corresponding
joint angles in the source skeleton structure to the target skeleton
structure, then scaling the source skeleton to the same size as the
target skeleton, and finally performing a full-body inverse kinemat-
ics scheme [Yamane and Nakamura 2003] to move the joints of the
target skeleton to match any corresponding joint positions in the
source skeleton. Once constructed, the final dataset is about twice
the size of the CMU motion capture database and contains around
six million frames of high quality motion capture data for a single
character sampled at 120 frames per second.

4.2 Data Format for Training

We convert the dataset into a format that is suitable for training. We
subsample all of the motion in the database to 60 frames per second
and convert the data into the 3D joint position format from the joint
angle representation in the original dataset. The joint positions are
defined in the body’s local coordinate system whose origin is on the
ground where root position is projected onto. The forward direction
of the body (Z-axis) is computed using the vectors across the left
and right shoulders and hips, averaging them and computing the
cross product with the vertical axis (Y-axis). This is smoothed using
a Gaussian filter to remove any high frequency movements. The
global velocity in the XZ-plane, and rotational velocity of the body
around the vertical axis (Y-axis) in every frame is appended to the
input representation. These can be integrated over time to recover
the global translation and rotation of the motion. Foot contact labels
are found by detecting when either the toe or heel of the character
goes below a certain height and velocity [Lee et al. 2002], and are
also appended to input representation. The mean pose is subtracted
from the data and the joint positions are divided by the standard
deviation to normalize the scale of the character. The velocities, and
contact labels are also divided by their own standard deviations.

We find the joint position representation effective for several rea-
sons: the Euclidean distance between two poses in this represen-
tation closely matches visual dissimilarity of the poses, multiple
poses can be interpolated with simple linear operators, and many
constraints are naturally formulated in this representation.

In general, our model does not require motion clips to have a fixed
length, but having a fixed window size during training can improve
the speed, so for this purpose we separate the motion database
into overlapping windows of n frames (overlapped by n/2 frames),
where n = 240 in our experiments. This results in a final input vec-
tor, representing a single sample from the database, as X ∈ Rn×d
with n being the window size and d the degrees of freedom of the
body model, which is 70 in our experiments. After training the win-
dow size n is not fixed in our framework, thus it can handle motions
of arbitrary lengths.

5 Building the Motion Manifold

To construct a manifold over the space of human motion we build
an autoencoding convolutional neural network and train it on the
complete motion database. We follow the approach by Holden et
al. [2015], but adopt a different setup for optimizing the network
for motion synthesis. First, we only use a single layer for encoding
the motion, as multiple layers of pooling/de-pooling can result in
blurred motion after reconstruction due to the pooling layers of the



network reducing the temporal resolution of the data. Using only
one layer lacks the power to further abstract the low level features so
this task is performed by the deep feedforward network described
in Section 6. We also change several components to improve the
performance of the network training and bases quality. The details
are described below.

5.1 Network Structure

In our framework, the convolutional autoencoder performs a one-
dimensional convolution over the temporal domain, independently
for each filter. The network provides a forward operation Φ (en-
coding) and a backward operation Φ† (decoding). The forward
operation receives the input vector X in the visible unit space and
outputs the encoded values H in the hidden unit space.

The forward operation:

Φ(X) = ReLU(Ψ(X ∗W0 + b0)), (1)

consists of a convolution (denoted ∗) using weights matrix W0 ∈
Rm×d×w0 , addition of a bias b0 ∈ Rm, a max pooling operation
Ψ, and the nonlinear operationReLU(x) = max(x, 0), where w0

is the temporal filter width and m is the number of hidden units
in the autoencoding layer, each set to 25 and 256 in this work; a
temporal filter width of 25 ensures each filter roughly corresponds
to half a second of motion, while 256 hidden units is experimentally
found to produce good reconstruction.

The max pooling operation Ψ returns the maximum value of each
pair of consecutive hidden units on the temporal axis. This reduces
the temporal resolution, ensures that the learned bases focus on rep-
resentative features, and also allows the bases to express a degree
of temporal invariance. We use the rectified linear operationReLU
instead of the common tanh operation, since its performance as an
activation function was demonstrated by Nair and Hinton [2010].

The backward operation:

Φ†(H) = (Ψ†(H)− b0) ∗ W̃0. (2)

takes hidden units H ∈ R
n
2
×m as input, and consists of an inverse-

pooling operation Ψ†, a subtraction of a bias b0 and convolution
using the weights matrix W̃0. W̃0 ∈ Rd×m×w0 is simply the
weights matrix W0 reflected on the temporal axis, and transposed
on the first two axes, used to invert the convolution operation.

When performing the inverse pooling operation, each unit in the
hidden layer must produce two units in the visible layer (those
which were pooled during the forward operation). This operation is
therefore non-invertible and an approximation must be used. Dur-
ing training Ψ† randomly picks between the two corresponding vis-
ible units and assigns the complete value to one of those units, leav-
ing the other unit set to zero. This represents a good approximation
of the inverse of the maximum operation but introduces noise into
the result. Therefore when performing synthesis Ψ† acts like an
average pooling operation and spreads the hidden unit value evenly
across both visible units.

The filter values W0 are initialized to some small random values
found using the “fan-in” and “fan-out” criteria [Hinton 2012], while
the bias b0 are initialized to zero.

5.2 Training the Autoencoder

We train the network to reproduce some input X following both the
forward and backward operations. Training is therefore given as

Figure 3: A selection of convolutional filters from the autoencoder.
Here the horizontal axis represents time, while the vertical axis rep-
resents the degrees of freedom. Filters are sparse (mainly zero), and
show strong temporal and inter-joint correlations.

Figure 4: Convolutional filters learned by a network without
dropout or max pooling. Compared to the filters in Fig. 3 these
filters are noisy and have not learned any strong temporal corre-
lations as most of their activations are located around the central
frame of the filter.

an optimization problem. We minimize the following cost function
with respect to the parameters of the network, θ = {W0,b0} :

Cost(X, θ) = ‖X−Φ†(Φ(X))‖22 + α ‖θ‖1 (3)

In this equation, the first term measures the squared reproduction
error and the second term represents an additional sparsity term that
ensures the minimum number of network parameters are used to
reproduce the input. This is scaled by some small constant α which
in our case is set to 0.1.

To minimize this function we perform stochastic gradient descent.
We input random elements X from the database, and using auto-
matic derivatives calculated via Theano [Bergstra et al. 2010], we
update the network parameters θ. We make use of the adaptive gra-
dient descent algorithm Adam [Kingma and Ba 2014] to improve
the training speed and quality of the final bases. To avoid overfit-
ting, we use a Dropout [Srivastava et al. 2014] of 0.2. Training is
performed for 15 epochs and takes around 6 hours on a NVIDIA
GeForce GTX 660 GPU.

Once training is complete the filters express strong temporal and
inter-joint correspondences. A visualisation of the resulting weights
can be seen in Fig. 3. Here it is shown that each filter expresses the
movement of several joints over a period of time.

6 Mapping High Level Parameters to Human
Motions

We learn a regression between high level parameters and the charac-
ter motion using a feedforward convolutional neural network. The
high level parameters are abstract parameters for describing the mo-
tion, such as the root trajectory projected onto the terrain or the tra-
jectories of the end effectors such as the hands and feet. This is
a general framework that can be applied for various types of high
level parameters and animation outputs. Producing a mapping be-
tween the low dimensional, high level parameters to the full body
motion is a difficult task due to the huge amount of ambiguity and
multi-modality in the output. There can be many different valid
motions that could be performed to follow the high level parame-
ters. For example, when the character is instructed to walk along a
line, the timing of the motion is completely invariant: a character
may walk with different step sizes or walk out of sync with another



motion performed on the same trajectory. Naively mixing these out-
of-sync motions results in an averaging of the output, making the
character appear to float along the path. Unfortunately, there is no
universal solution for solving such an ambiguity problem, and each
problem must be solved individually based on the nature of the high
level parameters and the class of the output motion. Here we pro-
vide a solution for a locomotion task, which is a general problem
with high demand.

In the rest of this section, we first describe about the structure of the
feedforward network and how it can be trained, and then about the
details of the high level parameters for the locomotion task.

6.1 Structure of the Feedforward Network

We now describe the feedforward convolutional network which
maps the high level parameters T to the hidden layer of the au-
toencoding network constructed in the previous section, such that
eventually the system outputs a motion of the character X ∈ Rn×d.

The feedforward convolutional network uses a similar forward op-
eration as defined in Eq. (1) but contains three layers, and an addi-
tional operation Υ, which is a task-specific operation to resolve the
ambiguity problem. We will discuss more about it in Section 6.3.
The feedforward operation is given by the following:

Π(T) = ReLU(Ψ(ReLU(ReLU(Υ(T)

∗W1 + b1) ∗W2 + b2) ∗W3 + b3)), (4)

where W1 ∈ Rh1×l×w1 , b1 ∈ Rh1 , W2 ∈ Rh2×h1×w2 ,
b2 ∈ Rh2 , W3 ∈ Rm×h2×w3 , b3 ∈ Rm, h1, h2 are the
number of hidden units in the two hidden layers of the feedfor-
ward network, w1, w2, w3 are the filter widths of the three con-
volutional operators and l is the DOF of the high level param-
eters, which are set to 64, 128, 45, 25, 15 and 7, respectively.
These filter widths ensure each frame of motion is generated us-
ing roughly one second of trajectory information. The parameters
of this feedforward network used for regression are therefore given
by φ = {W1,W2,W3,b1,b2,b3}.

6.2 Training the Feedforward Network

To train the regression between the high level parameters and the
output motion, we minimize a cost function using stochastic gra-
dient descent in the same way as explained in Section 5.2, but this
time with respect to the parameters of the feedforward network,
keeping the parameters of the autoencoding network fixed. The
cost function is defined as the following and consists of two terms:

Cost(T,X, φ) = ‖X−Φ†(Π(T))‖22 + α ‖φ‖1 (5)

The first term computes the mean squared error of the regression
and the second term is a sparsity term to ensure the minimum num-
ber of hidden units are used to perform the regression. As before,
α is set to 0.1.

When training this network, we only use data relevant to the
task. For example, during the locomotion task we only use the
locomotion-specific data. Training therefore takes significantly less
time than the autoencoder. For the locomotion task, training is per-
formed for 200 epochs and takes approximately 1 hour.

6.3 Disambiguation for Locomotion

In this section, we describe about our solution to disambiguate the
locomotion, given a curve drawn on the terrain. A curve on a terrain
alone does not give enough information to fully describe the motion

Figure 5: A square wave representing the foot contact computed
from a sin wave. The foot is in contact with the ground when the
value is 1.

that should be produced due to the ambiguity problem mentioned
above. We examined various types of inputs, and discovered that
providing the timing when the feet is in contact with the ground can
greatly disambiguate the locomotion. Indeed, the contact timing
even distinguishes walking and running as there is always a double
support phase in walking, and there is a flying phase in running. We
therefore train a model which can be used to automatically compute
foot contacts from a given trajectory. We include this in the input
to the feedforward network to resolve the ambiguity.

The input to this network is the trajectory in the form of transla-
tional velocities on the XZ plane and rotational velocity around the
Y axis, given for each timestep and relative to the forward facing
direction of the path T ∈ Rn×k, where n is the number of frames
in the trajectory and k is the dimensionality of the trajectory input,
which is 3. The character height is considered constant. This in-
put is passed to the function Υ in Eq. (4), which adds foot contact
information to the trajectory input:

Υ(T) = [T F] , (6)

where F ∈ {−1, 1}n×4 is a matrix that represents the contact states
of left heel, left toe, right heel, and right toe at each frame, and
whose values are 1 when in contact with the ground, and -1 other-
wise.

Modeling Contact States by Square Waves: We model the
states of the four contacts using four square waves and learn the
parameters of these waves from the data in a way that allows us to
compute them from the trajectory T. The four square waves that
model the four contacts, and produce F, are defined as follows:

F(ω, τ) =


sign(sin(c ω + ah)− bh − τ lh)
sign(sin(c ω + at)− bt − τ lt)

sign(sin(c ω + ah + π)− bh − τrh)
sign(sin(c ω + at + π)− bt − τrt)


ᵀ

, (7)

where ω and τ control the frequency and step duration at each frame
of motion (see Fig. 5), and are the parameters we are interested in
computing from the trajectory.

These parameters alone are enough to produce contact information,
but to allow for more artistic control some user parameters are also
provided. ah, at are constants that adjust the phases of the heels
and toes, bh, bt are constants that can be used to adjust the contact
duration of the heels and toes (therefore forcing the character to
walk or run), and c is a constant that can scale the frequency of the
stepping. In our experiments, we set ah, at to−0.1 and zero, bh, bt

to zero, and c to one. Below, we describe how to extract ω and τ
from the locomotion data.



Extracting Wave Parameters from Data: To produce a regres-
sion between the input curve T and parameters ω, τ , we need to
first compute these parameter values from the foot contact informa-
tion in the dataset. For each frame i the angle ωi can be computed
by summing the differential ωi = ∆ωi + ∆ωi−1 + ...+ ∆ω0. We
therefore calculate ∆ωi for each frame i in the data instead. From
the dataset, ∆ωi can be computed by ∆ωi = π

Li
where Li is the

wavelength of the steps, and is computed by subtracting the timings
of adjacent off-to-on frames, and averaging them for the four con-
tact points (left/right, heel/toe). Learning ∆ω from the data instead
of ω also allows for the footstep frequency to change during the
locomotion, for example to allow the character to take more steps
during a turn. We extract τi by looking at the foot contact infor-
mation in the gait cycle that includes frame i and taking the ratio
of the number of frames with the foot up ui over the number of
frames with the foot down di. This ratio can be converted to the
square wave threshold value τi using the following:

τi = cos
πdi

ui + di
. (8)

For each heel and toe we learn separate τ variables, while ∆ω
is the same between all contacts. This avoids feet going out
of sync. These parameters are packed into a matrix Γ =
{τ lh, τ lt, τrh, τrt,∆ω}.

Regressing the Locomotion Path and Contact Information:
Now we describe how we produce a regression between the input
curve T and the contact square wave parameters Γ. Using the lo-
comotion data from the motion capture dataset, we compute the lo-
comotion path T by projecting the motion of the root joint onto the
ground. We also extract the corresponding Γ and the foot contact
parameters of the square waves, by the method described above.
We then regress T to Γ using a small two layer convolutional neu-
ral network.

Γ(T) = ReLU(T ∗W4 + b4) ∗W5 + b5 (9)

Here W4 ∈ Rh4×k×w4 , b4 ∈ Rh4 , W5 ∈ Rl×h4×w5 , b5 ∈ Rl
are the parameters of this network, where w4, w5 are the filter
widths, h4 is the number of hidden units, and k, l are the DOF
of T, Γ at each frame, respectively, which are 3 and 5. This net-
work is trained using stochastic gradient descent as explained in
Section 5.2.

Once this network is trained, given some trajectory T, it com-
putes the values for τ,∆ω, which can be used to calculate F using
Eq. (7), therefore producing foot contact information for the trajec-
tory.

7 Motion Editing in Hidden Unit Space

In this section, we describe how to edit or transform the style of
the motion in the space of hidden units, which is the abstract rep-
resentation of the motion data learned by the autoencoder. Because
the motion is edited in the space of the hidden units, which param-
eterize the manifold over valid motion, it ensures that even after
editing, the motion remains smooth and natural. We represent con-
straints as costs with respect to the values of hidden units. This
formulation of motion editing as a minimization problem is often
convenient and powerful as it specifies the desired result of the edit
without inferring any technique of achieving it. We first describe an
approach to apply kinematic constraints (see Section 7.1) and then
about adjusting the style of the motion in the space of hidden units
(see Section 7.2).

7.1 Applying Constraints in Hidden Unit Space

Because the scope of motion editing is very large we start by de-
scribing how to apply constraints in the hidden space using three
common constraints often found in character animation as exam-
ples: positional constraints, bone length constraints, and trajectory
constraints, but our approach is applicable to other types of con-
straints providing the constraint can be described using a cost func-
tion. Note that all these costs compute the error for all frames si-
multaneously, summed over the temporal domain.

Positional Constraints: Constraining the joint positions is es-
sential for fixing foot sliding artifacts or guiding the hand of the
character to to grasp objects. Given an initial input motion in the
hidden unit space H, its cost in terms of penalty for violating the
positional constraints is computed as follows:

Pos(H) =
∑
j

‖vH
r + ωH × pH

j + vH
j − v′j‖22. (10)

where v′j ∈ Rn×3 is the target velocity of joint j in the body co-
ordinate system, and vH

r ,p
H
j ,v

H
j ∈ Rn×3, ωH ∈ Rn are the root

velocity, joint j’s local position and velocity, and the body’s angular
velocity around the Y axis, respectively, computed from the hidden
unit values H by the decoding operation Φ†(H) in Eq. (2), for all
the frames. For example, in order to avoid foot sliding, the heel and
toe velocity must be zero when they are in contact with the ground.

Bone Length Constraints: As we use the joint positions as the
representation in our framework, we need to impose the bone length
constraint between adjacent joints to preserve the rigidity of the
body. The cost for such a constraint can be written as follows:

Bone(H) =
∑
i

∑
b

|‖pHi
bj1
− pHi

bj2
‖ − lb|2 (11)

where b is the index for the set of bones in the body, pHi
bj1
,pHi

bj2
are

the reconstructed 3D positions of the two end joints of b at frame i,
computed by the decoding operation Φ†(H) in Eq. (2) and lb is the
length of bone b.

Trajectory Constraints: As a result of motion editing or error in
the synthesis motion may not exactly follow the desired trajectory.
We may therefore need to additionally constrain the motion to some
trajectory precisely. The cost for such a constraint can be written as
follows:

Traj(H) = ‖ωH − ω′‖22 + ‖vH
r − v′r‖22 (12)

Projection to Null Space of Constraints: The motion gener-
ated by the autoencoder is adjusted in the space of hidden units via
gradient descent until the total cost converges within a threshold:

H′ = argmin
H

Pos(H) +Bone(H) + Traj(H). (13)

By minimizing Eq. (13) and projecting the found H′ back into the
visible unit space using Eq. (2), we can constrain the joints to the
desired position while keeping the rigidity of each bone.



Figure 6: A side stepping motion produced from a velocity profile
from some test data and an angular velocity profile drawn by Maya.

7.2 Motion Stylization in Hidden Unit Space

Our framework for editing the motion in the hidden space can also
be applied to transform the style of the motion using an example
motion clip as a reference. Gatys et al. [2015] describe that the
artistic style of an image is encoded in the Gram matrix of the hid-
den layers of a neural network and presents examples of combining
the content of a photograph and the style of a painting. By finding
hidden unit values which produce a Gram matrix similar to the ref-
erence data, the input image can be adjusted to some different style,
while retaining the original content. We can use our framework to
apply this technique to motion data and produce a motion that has
the timing and content of one input, with the style of another.

The cost function in this case is defined by two terms relating to
the content and style of the output. Given some motion data C
which defines the content of the produced output, and another S
which defines the style of the produced output, the cost function
over hidden units H is given as the following:

Style(H) = s‖G(Φ(S))−G(H)‖22 + c‖Φ(C)−H‖22 (14)

where c and s dictate the relative importance given to content and
style, which are set to 1.0 and 0.01, respectively in our experiments,
and the function G computes the Gram matrix, which is the mean
of the inner product of the hidden unit values across the temporal
domain i and can be thought of as the average similarity or co-
activation of the hidden units:

G(H) =

∑n
i HiH

ᵀ
i

n
. (15)

Unlike in Section 7.1, where H is found via motion synthesis or
the forward operation of the autoencoder, to avoid a bias toward
either content or style, H is initialized from white noise and a styl-
ized motion is found by optimizing Eq. (14) until convergence us-
ing adaptive gradient descent with automatic derivatives calculated
via Theano. The computed motion is then edited using Eq. (13) to
satisfy kinematic constraints.

8 Experimental Results

We now show some experimental results of training and synthe-
sizing character movements. We first show examples of animating
character movements using high level parameters and the frame-
work described in Section 6, with projection to the null space of
constraints as described in Section 7.1. We next show examples of
applying stylization using the framework described in Section 7.2.
As our system has a fast execution at runtime it is suitable for creat-
ing animation of large crowds. We therefore show such an example
of this. We then evaluate the autoencoder representation by com-
paring its performance with comparable network structures. Finally

Figure 7: A locomotion including transition from walk to stop and
run.

Figure 8: The character performs punching and kicking to attack
the given targets.

we present a breakdown of the computation at the end of this sec-
tion. The readers are referred to the supplementary video for the
details of the produced animation.

Locomotion on the Terrain The feedforward network is trained
such that a curve drawn on the terrain is used to generate the ac-
tual locomotion of the character. Among the data in the database,
various types of locomotion data with different speed and stepping
patterns are used to train the system. Using the training data, the
trajectory of the root is projected onto the ground to produce a ter-
rain curve to be used as an input.

During runtime, curves drawn by Maya are first used to produce
walking and running animation. In the first two examples, the speed
of the character is constant. The timing that the heels and toes are in
contact with the ground is automatically generated from the curve
and used as the input to the feedforward network. The character
walks when the velocity is low and runs when the velocity is high
(see Fig. 1). In the next example, we take the body velocity profile
from some test set not used in the training. We also add some turn-
ing motion by drawing the angular velocity profile by Maya (see
Fig. 6). In the final example, we use a speed profile from a test data
item where the character accelerates and decelerates. This is ap-
plied to a terrain curve drawn by Maya. A transition from walking
to stopping and running appears as a result (see Fig. 7).

Punching and Kicking Control We show another example
where the feedforward network is set up such that the character
punches and kicks to follow end effector trajectories provided by
the user. We tested the system using test data not included in the
training set. The character generates full body movements that fol-
low the trajectories of the end effectors. Some snapshots of the
animation are shown in Fig. 8.

Motion Editing in the Hidden Unit Space Here we show the
motions before and after applying the constraints to the those gen-
erated by the feedforward network. We also compare the motion
edited in the hidden unit space with those edited in the Cartesian
space by inverse kinematics. The former produces much smoother
results as the motion is edited on the leanred manifold. The results



Figure 9: Several animations are generated with the timing from
one clip and the style of. Red: input style motions. Green: input
timing motions. Blue: output motion. In a clockwise order the styles
used are zombie, depressed, old man, injured.

Figure 10: Crowd motion for 200 characters is generated in par-
allel using the GPU.

are presented in the video.

Transforming the Style of the Motion We next show an exam-
ple of transforming the style of the character’s locomotion using a
separate motion clip. Style data where the character walks in a (1)
zombie style (2) depressed style (3) old man style and (4) injured
style are given, and they are passed through the autoencoder to com-
pute the Gram matrices. These Gram matrices are used for convert-
ing the style of the given locomotion data using the optimization
method described in Section 7.2. Locomotion data is taken from
the dataset, while style data is a combination of internal captures,
and captures from [Xia et al. 2015]. The snapshots of the animation
are shown in Fig. 9.

Crowd Animation Our approach allows for parallel computation
across the timeline using the GPU. This allows us to create motion
for many characters at once. We make use of this feature to apply
our system for synthesizing an animation of a large set of characters
using the terrain curve framework described in Section 6. Results
of this are shown in Fig. 10.

Comparing the Autoencoder with Other Network Structures
Here we evaluate the representation found by the autoencoder. We
compare its performance to a naive construction of a neural net-
work without max pooling or dropout. If trained without dropout
or max pooling the network does not learn strong temporal coher-
ence, as can be seen in Fig. 4. This motion manifold without tem-
poral coherence is fairly similar to a per-pose PCA - when applied
to the style transfer task, because there is no temporal smoothness
encoded in this model, the output is extremely noisy as shown in
Fig. 11. In the motion synthesis task the neural network without
max pooling or dropout actually has a slightly lower mean error,

Figure 11: Two graphs of the vertical movement of the hand joint
in motion generated in the style transfer task. Top: movement when
the neural network uses dropout and max pooling. Bottom: move-
ment when the neural network does not use these operations - the
movement is very noisy due to the lack of temporal correlation en-
coded in the motion manifold.

but similar noise was present in results. This can be seen in Fig. 12.

Breakdown of the Computation In this section we give a break-
down of the various timings of the computation for each result
presented. This is shown in Table 1. All examples of animation
are generated at a sample rate of 60fps. For the crowd scene the
frame rate is given by finding the total number of frames generated
across all 200 characters. All results are produced using a NVIDIA
GeForce GTX 660 and Theano. Our technique clearly scales well
as the total time required to generate results remains similar, even
with long sequences of animation or many characters. All times
are given in seconds. In particular our technique works well on
the crowd scene due to the fact it can run in parallel both across
characters, and across the timeline.

9 Discussions

Many other approaches to motion synthesis are time-series ap-
proaches [Taylor and Hinton 2009; Taylor et al. 2011; Mittelman
et al. 2014; Xia et al. 2015], but our approach to motion synthesis
is a procedural approach as it does not require step-by-step calcu-
lation, and individual frames at arbitrary times can be generated on
demand. This makes it a good fit for animation production soft-
ware such as Maya which allows animators to jump to arbitrary
points in the timeline. Animators also do not need to worry about
changes affecting the generated animation outside of the local con-
volution window. This also makes the system highly parallelizable,
as motion for all frames can be computed independently. As a result
the trajectories of many characters can be generated during runtime
on the GPU at fast rates. Generating motion in parallel across the
timeline requires continuity between frames. This is handled by
our framework in two ways. The high level continuity (such as the
timing) is provided by the generation of foot contact information,
while the low level continuity (smoothness etc.) is ensured by the
manifold.

Although procedural approaches are not new in character anima-
tion [Lee and Shin 1999; Kim et al. 2009; Min et al. 2009], previous
methods require the motion to be segmented, aligned and labeled
before the data can be included into the model. On the contrary,
our model automatically learns the model from a large set of mo-



Task Duration Foot Contacts Synthesis Editing Total FPS
Walking 60s 0.025s 0.067s 1.096s 1.188s 3030
Running 60s 0.031s 0.073s 1.110s 1.214s 2965
Punching 4s - 0.019s 0.259s 0.278s 863
Kicking 4s - 0.020s 0.302s 0.322s 745
Style Transfer 8s - - 2.234s 2.234s 214
Crowd Scene 10s 0.557s 1.335s 2.252s 4.144s 28957

Table 1: Performance breakdown.

Figure 12: Two graphs of the vertical movement of the spine joint
in motion generated in the motion synthesis task. Purple Line:
Ground Truth. Blue Line: Generated Movement. Top: movement
when the neural network uses dropout and max pooling - although
the movement does not follow exactly, the signal is smooth. Bottom:
movement when the neural network does not use these operations
- the movement fits more closely to the ground truth but has visible
high frequency noise.

tion data without manual labeling or segmentation. This makes the
system highly practical as the users can easily add the new motion
data into the training set to enrich the model.

Our convolutional filters only shift along the temporal axis; a natu-
ral question to ask is if this convolution can also be used spatially,
for example, over the graph structure of the character. The idea
of using a temporal convolutional model is to ensure the learned
bases of the autoencoder are local and invariant - that their influ-
ence is limited to a few frames, and that they can appear anywhere
in the timeline. These assumptions of locality and invariance do
not generalize well in the spatial domain. There are strong corre-
lations between separate parts of the body according to the motion
(for example, arms and legs synchronized during walking), and it
is difficult to confine the influence along the graph structure. Also,
the bases such as those for the arm are in general not applicable to
other parts of the body, which shows the structure is not invariant. It
is to be noted that our filters do capture the correlation of different
joints; the signals of different DOFs are summed in the convolution
operation in Eq. (1), and thus the filters are optimized to discover
correlated movements.

There are some important parameters of the system, which are de-
termined carefully taking into account the nature of human move-
ments and through experimental results. These include the fil-
ter widths of the human motion (w0 in Eq. (1)) and those of the
trajectories for the feedforward network (w1, w2, w3 in Eq. (4)).
For the filter width of the human motion (w0 = 25), this cov-
ers about half-a-second. Setting this value too long results in the

motions to be smoothed out excessively or even fail to train. Set-
ting it too short will make the system work like per-pose training,
where the smoothness of motion cannot be learned from the data.
For the feedforward network, the filter width is set a little longer
(w1 = 45, w2 = 25, w3 = 15), such that the character prepares
early enough for future events. Setting this too short will result in
lack of variations, and too long will result in overfitting, where odd
movements are produced for novel trajectories. These values are
initially set through intuition and fine-tuned through visual analy-
sis.

Limitations In our framework, the input parameters of the feed-
forward network need to be carefully selected such that there is
little ambiguity between the high level parameters and the output
motion. Ambiguity is a common issue in machine learning where
the outputs of the regressor are averaged out when multiple outputs
correspond to the same input in the training data. In some cases
additional data that resolves the ambiguity may be required. This
can either be supplied by the user directly, or must be found using
an additional model such is done with our foot contact model.

10 Conclusion

We propose a deep learning framework to map high level parame-
ters to an output motion by first learning a motion manifold using
a large motion database and then producing a mapping between the
user input to the output motion. We also propose approaches to edit
and transform the styles of the motions under the same framework.

Currently, our autoencoder has only a single layer as deep stacked
autoencoders suffer from blurriness during the depooling process.
In our system, the role of combining and abstracting the low level
features is covered by the feedforward network stacked on top of
it. However, a more simple feedforward network, which is easier to
train, can be used if a stacked deep autoencoder is used for learn-
ing the motion manifold. It will be interesting to look into newly
emerging depooling techniques such as hypercolumns [Hariharan
et al. 2014] that cope with the blurring effect to produce a deep
network for the motion manifold.
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