
Control Operators for Interactive Character Animation
RUIYU GOU, Epic Games, Canada
MICHIEL VAN DE PANNE, University of British Columbia, Canada
DANIEL HOLDEN, Epic Games, Canada

Fig. 1. An illustration showing a selection of the different control mechanisms our Flow-Matching-based character controller is capable of using.

Neural-network-based character controllers are increasingly common and
capable. However, the integration of desired control inputs such as joy-
stick movement, motion paths, and objects in the environment, remains
challenging. This is because these inputs often require custom feature en-
gineering, specific neural network architectures, and training procedures.
This renders these methods largely inaccessible to non-technical design-
ers. To address this challenge, we introduce Control Operators, a powerful
and flexible framework for specifying the control mechanisms of interac-
tive character controllers. By breaking down the control problem into a
set of simple operators, each with a semantic meaning for designers, and a
corresponding neural network structure, we allow non-technical users to
design control mechanisms in a way that is intuitive and can be composed
together to train models that have multiple skills and control modes. We
demonstrate their potential with two current state-of-the-art interactive
character controllers - a Flow-Matching-based auto-regressive model, and
a variation of Learned Motion Matching. We validate the approach via a
user study wherein industry practitioners with varying degrees of ML and
technical expertise explore the use of our system.

CCS Concepts: • Computing methodologies→Motion capture.

Additional Key Words and Phrases: Interactive Animation, Video Games,
Motion Matching, Generative Models, Flow Matching, Neural Networks,
Character Animation, Animation,

Authors’ Contact Information: Ruiyu Gou, Epic Games, Vancouver, Canada, ruiyu.
gou@epicgames.com; Michiel van de Panne, University of British Columbia, Vancouver,
Canada, van@cs.ubc.ca; Daniel Holden, Epic Games, Montreal, Canada, daniel.holden@
epicgames.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-7368/2025/12-ART231
https://doi.org/10.1145/3763319

ACM Reference Format:
Ruiyu Gou, Michiel van de Panne, and Daniel Holden. 2025. Control Opera-
tors for Interactive Character Animation.ACMTrans. Graph. 44, 6, Article 231
(December 2025), 20 pages. https://doi.org/10.1145/3763319

1 Introduction
Neural-network-based methods of character animation and inter-
active control have become the standard in academia over the
last seven or eight years, and have made significant inroads into
the industry [Bocquelet et al. 2022; Büttner 2019; Cascadeur 2023;
Holden et al. 2020; Kleanthous and Martini 2023; Oreshkin et al.
2024; Ryan Cardinal 2022; Zinno 2019]. These models show promise
in their ability to consume large datasets, learn from unstructured
or relatively unprocessed motion capture data, and produce com-
pact and fast to evaluate models that can output natural looking
animation.
The bulk of research focusing on real-time, interactive control

makes use of standard video game control mechanisms such as the
gamepad, mouse, and keyboard [Holden et al. 2020], or VR trackers
and headsets [Lee et al. 2023; Starke et al. 2024]. Inputs from these
devices are then typically mapped to inputs of the neural network,
which is used to dynamically generate the character’s animation
frame by frame.
This is usually not a direct mapping, however, and the develop-

ment of good control mechanisms for neural-network-based charac-
ter animation is non-trivial. In addition to simple post-processing of
hardware signals, e.g., dead-zone elimination on the gamepad, better
results are generally achieved via further feature engineering, such
as constructing a predicted future trajectory of the character [Zhang
et al. 2018], or blending user controls with estimations of the most
likely controls according to the current state of the character or
other characters [Starke et al. 2021]. As well as user inputs, informa-
tion about the virtual world may be additionally provided to give
more context to the network, such as information about the current
state of the character, occupancy information [Starke et al. 2019],
2D heightmaps [Peng et al. 2017], or the positions, orientations, or

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

https://doi.org/10.1145/3763319
https://doi.org/10.1145/3763319

231:2 • Gou et al.

phases of virtual object [Starke et al. 2020]. Finally, video game AI
systems may also provide inputs to character controllers - such as
providing paths to follow or actions to take at certain locations.
A key difficulty with the diverse variety of potential control in-

puts is that the control design may also influence the design of
the neural network structure that consumes it. For example, 2D
heightmaps may be processed via convolution. It may also change
the training methodology, introducing additional losses or addi-
tional pre-processing steps. This coupling between network struc-
ture, trainingmethodology, and control designmakes it very difficult
for non-technical designers, animators, and other users to design
new neural-network-based character controllers without Machine
Learning expertise, which so often limits state-of-the-art models to
the single bespoke behaviors they have been designed for.

To begin to address this challenge, we introduce Control Operators.
Control Operators provide non-technical users a way of specifying
and designing interactive character controllers in a way which
is familiar to them as game designers. Rather than building their
neural-network-based character controller holistically, they can in-
stead construct it by composing simple operators that resemble the
logical and semantic operations they might want. Once a user has
described the input controls they wish to provide to the network,
the network structure is generated automatically. Then, they must
describe how the controls are given in the training data, and, once
trained, they must describe how these variables are provided at run-
time. Once they have performed these three steps, their controller
is ready to be used.
To demonstrate and evaluate Control Operators, we implement

them in Unreal Engine’s Blueprint Visual Scripting Language [Un-
real 2022b]. Our framework is controller-agnostic: we showcase it on
two current state-of-the-art character controllers - a segment-based
variation of Learned Motion Matching and a Flow-Matching-based
auto-regressive model. The former adapts the existing approach of
Holden et al. [2020] and the latter introduces a new use of Flow
Matching in the interactive animation setting. Finally, we conduct a
user study to evaluate the degree to which our implementation al-
lows non-technical users to build machine-learning-based character
controllers. We provide a simplified Python reference implementa-
tion, see https://github.com/gouruiyu/ControlOperators.

2 Related Work
In this section we discuss previous work related to our research
including previous work on interactive character controllers, diffu-
sion and Flow Matching models applied to character animation, and
alternative control frameworks for interactive character animation.

2.1 Interactive Character Controllers
Building interactive character controllers has been a long-standing
problem in computer graphics and animation. Early work made use
of animation blending [Park et al. 2002; Rose et al. 1998], often as
part of a Motion Graph which dictated the overall logic and state
transitions of the character [Heck and Gleicher 2007; Kovar et al.
2002; Lee et al. 2002; Min and Chai 2012; Safonova and Hodgins 2007;
Shin and Oh 2006]. This approach, however, is not easy to scale as
it requires short, specific, time-aligned animation clips. Researchers

have therefore looked towards statistical methods that could more
easily learn from unprocessed motion capture data.
Early Machine Learning methods in this domain made use of

linear or kernel-based methods [Lee et al. 2010; Levine et al. 2012;
Treuille et al. 2007; Wang et al. 2008]. Unfortunately, linear models
have limited expressiveness and kernel-based models have poor
computation complexity with respect to the size of the training
data set. While the development of neural networks allowed for
training on large datasets of rawmotion capture data, early attempts
at building interactive controllers using them proved difficult, as
the additional data also amplified the ambiguity issue - that having
multiple animations corresponding to the same control signal would
cause the prediction to tend towards the mean, causing a “dying-out”
effect [Fragkiadaki et al. 2015; Martinez et al. 2017].
One of the early attempts at solving this issue was presented

by Holden et al. [2017]. This work introduced Phase-Functioned
Neural Networks, which factored out the phase in the neural net-
work structure, greatly reducing the ambiguity in the regression.
This phase-based approach was further extended and generalized
to quadruped motions [Zhang et al. 2018], environmental interac-
tions [Starke et al. 2019], basketball [Starke et al. 2020], character
interactions [Starke et al. 2021], dancing [Starke et al. 2022], and
more [Li et al. 2024]. Meanwhile, other machine learning methods
have also been used to tackle the ambiguity problem, including
longer-term auto-regressive models using memory [Park et al. 2019;
Pavllo et al. 2019, 2018], normalizing-flows [Henter et al. 2019; Valle-
Pérez et al. 2021], adversarial networks [Li et al. 2022; Wang et al.
2021], Variational Auto-Encoders [Ling et al. 2020; Yao et al. 2022],
and vector quantization [Yao et al. 2024].
In the games industry, Motion Matching [Büttner and Clavet

2015; Clavet 2016; Holden 2018; Holden et al. 2020; Kleanthous and
Martini 2023] is a popular solution, which solves the ambiguity
issue by selecting the nearest neighbor in the dataset [Li et al. 2023a;
Starke et al. 2024]. Finally, and most recently, diffusion models have
been used [Chen et al. 2024b; Shi et al. 2024; Zhang et al. 2023a] as
they present an elegant solution to the multi-modality problem and
allow for easy sampling of the conditional probability distribution of
the next frame given the previous frame (and the provided controls)
without tending toward the average.

While all of these solutions have made real progress towards
resolving the ambiguity issue, many existing neural-network-based
interactive character controllers are only capable of performing
single behaviors (or require separate networks per-behavior), often
with bespoke designs for specific tasks such as locomotion [Ling
et al. 2020], basketball [Liu and Hodgins 2018; Starke et al. 2020],
martial arts [Starke et al. 2021], tennis [Zhang et al. 2023b], skate-
boarding [Liu and Hodgins 2017], soccer [Hong et al. 2019], climb-
ing [Naderi et al. 2017], and dance [Alexanderson et al. 2023; Tan
et al. 2023; Valle-Pérez et al. 2021]. We hypothesize that this is due
to two issues: 1) the feature engineering required by most control
tasks, and 2) the lack of composability inherent in most methods of
conditioning. Control Operators attempt to solve this by breaking
the control problem down into individual composable and re-usable
parts that allow a model to learn multiple behaviors in a single
network.

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

https://github.com/gouruiyu/ControlOperators

Control Operators for Interactive Character Animation • 231:3

2.2 Diffusion and Flow-Matching Models
Improvements in sequence-to-sequence modeling [Vaswani et al.
2017], the success of text-conditioned image generation, and the de-
velopment of large language models, have led to a growing body of
work focused on text-based animation generation [Zhu et al. 2023a].
Text-based conditioning is accessible and easy-to-control even for
novice users, but generally targets offline generation. Due to the
requirement of large databases of annotated motion capture data,
these methods have mostly made use of the AMASS [Mahmood
et al. 2019] or HumanML3D [Guo et al. 2022] datasets, and SMPL
body model [Loper et al. 2015]. For interactive applications such
as video games, where precision and responsiveness are important,
controlling a virtual character via typing in text commands is of-
ten not appropriate, and text-based conditioning remains largely
unproven for in-game use.
Significant advances have also been seen in multi-modal gener-

ative models, including models based on diffusion [Ho et al. 2020;
Song et al. 2021] and Flow Matching [Lipman et al. 2023]. In partic-
ular, diffusion and Flow Matching present elegant solutions to the
problem of multi-modal generation and the ambiguity issue. There-
fore, diffusion-based generativemodels [Ho et al. 2020] have recently
been widely used for animation synthesis, modeling space-time mo-
tions [Cohan et al. 2024; Sun et al. 2024; Tevet et al. 2023; Zhang
et al. 2022] or used in auto-regressive motion generation [Chen et al.
2024b; Li et al. 2023b; Shi et al. 2024; Zhang et al. 2023a; Zhao et al.
2024].
One limitation of traditional diffusion models [Ho et al. 2020] is

that they rely on many (potentially thousands) of denoising steps,
making them less amenable to interactive applications. To alleviate
this limitation, various works have focused on reducing the required
sampling steps through fast-sampling methods such as Denoising
Diffusion Implicit Models (DDIM) [Song et al. 2021], consistency
distillation [Dai et al. 2024], or training and sampling in lower-
dimensional latent spaces [Chen et al. 2023; Zhao et al. 2024]. Flow
Matching [Lipman et al. 2023] (alternatively formulated as iterative
𝛼-(de)Blending [Heitz et al. 2023]) provides a simpler formulation
of diffusion that retains the key principle of gradually transforming
noise into samples from a target data distribution. Flow Matching
learns a continuous trajectory from noise to the target data distribu-
tion, enabling comparably high-quality generation with far fewer
inference steps, similar to DDIM.
We incorporate these principles by employing a latent auto-

regressive Flow Matching model as one of our example controllers.
By using Flow Matching in a compact latent pose space instead of
stochastic diffusion in the full pose space, and using an MLP-based
network that predicts a single pose at a time [Shi et al. 2024], we
can run inference in just a few (typically 4) steps. Further distilla-
tion [Frans et al. 2024; Liu et al. 2022] can be applied to allow for
inference using as little as one step.

Existing work on conditioning motion diffusion models uses sim-
ilar methods to other domains such as image synthesis, focusing on
text-based prompts [Tevet et al. 2023], leveraging large-scale pre-
trained encoders such as CLIP [Radford et al. 2021]. Recent work has
also explored conditioning on audio and speech for gesture genera-
tion [Ao et al. 2023], and music for dance generation [Alexanderson

et al. 2023]. However, these approaches do not provide real-time
user control, which is essential for interactive applications such
as video games. By training a hierarchical reinforcement learning
controller, AMDM [Shi et al. 2024] demonstrates control such as
moving to a target, moving at a given speed with an orientation from
the joystick, and path following. We show that our Flow Matching
model can instead be directly conditioned on encoded control sig-
nals processed by Control Operators rather than relying on a policy
network, and is therefore capable of performing a wider-range of
tasks using a single network.

2.3 Control Frameworks
Previous research which focuses on enabling virtual characters to
perform multiple tasks or behaviors broadly falls into two different
approaches: 1) the specification of tasks via objective functions
which are then either optimized for, or an optimal policy learned via
reinforcement learning. 2) a story-boarding-like approach where the
structure of the desired animation is described in formal or natural
language from which the animation is generated [Qing et al. 2023].

The specification of tasks via objective functions has long been a
tradition in robotics, kinematic, and physically-based animation [Heess
et al. 2017; Nonami et al. 2014; Peng and van de Panne 2017]. In
graphics, multiple works make use of a fundamental motion model
which is then fine-tuned on multiple different tasks and objective
functions [Cho et al. 2021; Dou et al. 2023; Ling et al. 2020; Luo
et al. 2020; Merel et al. 2020; Peng et al. 2017, 2021; Tessler et al.
2024, 2023; Xu et al. 2023a,b; Zhu et al. 2023b]. However, although
these approaches re-use a basic motion model, typically separate
policies need to be trained per-task each with individual encoders
and feature engineering required for the relevant control variables.
In particular, multi-task learning in a single policy is challenging
for reinforcement learning due to the nature of the Value Function
having to approximate an expectation of future discounted rewards,
which does not lend itself naturally to decomposition [Sun et al.
2022]. In contrast, our method uses supervised learning with con-
trol variables present in the training data, and so can more easily
combine multiple tasks and control variables into a single network.

Other works have tried to approach the problem of multi-task ani-
mation generation from a planning perspective. Agrawal et al. [2016]
present a controller that converts a high-level description of a task
into a foot-step plan to be executed by a low-level motion con-
troller. Most similar to our method are Hyun et al. [2016] and Lee
et al. [2018]. In the former, a task is described as a sentence in
a formal motion grammar, where tokens may include additional
control variables such as timings and speeds. In Lee et al. [2018],
sparsely annotated motion capture data is further augmented using
motion grammars and Laplacian motion editing to generate addi-
tional synthetic training data, in support of training a recurrent
neural network (RNN) that can be conditioned to perform multiple
different tasks. Our method is loosely inspired by motion grammars
- we also embrace the idea of users specifying their desired control
in the form of a formal language with continuous control variables
embedded, but extend this idea to include the association of specific
neural network operators that allows for training on supervised
control signals directly.

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

231:4 • Gou et al.

3 Control Operators
We now present the core concepts involved in Control Operators,
define the equations associated with the operators required by our
method, present several other interesting and useful operators, many
of which can be derived from others, and discuss the user workflow,
as well as some of the implementation details of our integration in
Unreal Engine’s Blueprint Visual Scripting Language.

3.1 Overview
A visual overview of the Control Operators framework is given in
Fig 2. Control Operators provide a way of encoding control input
coming from other systems, such as the player input or AI systems,
which may provide data which is not uniform in structure or in
a consistent format across frames. These control inputs may cor-
respond to multiple different tasks or styles of control, and may
contain missing values or variable amounts of information. For ex-
ample, an AI system may provide a target path for the character to
follow consisting of a variable number of way-points, while at other
times it may provide only a target position and facing direction for
the character to reach. In certain cases this may include a style for
the locomotion, or a gait, or a time of arrival, or it may not.

The goal of Control Operators is to automatically map this kind of
semantic description of the input structure onto meaningful neural
network primitives in a way that allows users with no knowledge
of neural networks to formally describe the format in which the
control input data is going to be provided. The encoding of that data
itself is then handled automatically.

In our implementation, the overall user workflow includes three
steps: (1) specifying the Control Schema which defines all possible
structures of control inputs, (2) associating control variables to
training data via Training Controls, and (3) defining Runtime Controls
to map runtime gameplay inputs at inference time, as illustrated in
Fig 3. We implement these steps all in the form of user-constructed
Blueprint Graphs. Details on them can be found in Section 3.5.

3.2 Basic Operators
Operators can be seen as functions with trainable parameters which
take one or more variables as input and produce a single control
vector with a fixed dimensionality as output. The core operators
used by our method are as follows:

3.2.1 Null. We can give an explicit name to the null control op-
erator which produces an empty vector as output. This operator
can be useful for uncontrolled generation (see Section 5.1) and as a
component of other operators.

Null() = [] (1)

3.2.2 Typed Operators. We can also define operators which take
as input variables of different types and encode those variables
as control vectors with fixed dimensionality in a way which is
appropriate for neural networks:

Bool(𝑥 ∈ B) = [𝑥] (2)

Location(x ∈ R3) = x (3)
Rotation(x ∈ Q) = TwoAxis(x) (4)

Scale(x ∈ R3) = log(x) (5)

Direction(x ∈ R3) = x (6)

Velocity(x ∈ R3) = x (7)

Index(𝑥 ∈ I, 𝑁 ∈ I) =
[
𝑥
𝑁

]
(8)

For example, in the above, TwoAxis performs quaternion to two-
axis conversion [Zhang et al. 2018; Zhou et al. 2018], log transforms
scales into the log-space, while we can encode an integer index as a
control vector using a position encoding. Any position encoding is
possible here [Dufter et al. 2021], but one very simple option is to
simply divide the index 𝑥 by a user-specified maximum 𝑁 .

These abstractions are important for users who may not have the
expert knowledge to design appropriate transformations for specific
variable types themselves.

3.2.3 Encode. We can allow users to add an additional layer of
encoding to a control vector at any point they wish. This can be
achieved by defining an operator which passes the input control
vector through a linear layer with a user provided output dimen-
sionality and activation function 𝜎 .

Encode(x) = 𝜎 (W x + b) (9)

3.2.4 And. Users can combine multiple controls using the And op-
erator. This operator takes as input a predefined set of 𝑁 control
vectors of different dimensionalities, and outputs their concatena-
tion, denoted by ∥, as output.

And(x0, x1, ..., x𝑁−1) = x0 ∥ x1 ∥ ... ∥ x𝑁−1 (10)

3.2.5 Or. We allow users to provide a single control from a set
of controls using the Or operator. This operator takes as input a
single control vector from a predefined set of 𝑁 control vectors of
different dimensionalities, along with the associated index 𝑖 from
that set. It then encodes this to an output control vector of a fixed
dimensionality using an associated weight matrix W𝑖 ∈ R𝑑𝑜×𝑑𝑖

and bias b𝑖 ∈ R𝑑𝑜 where 𝑑𝑖 is the dimensionality of the input
control vector 𝑖 and 𝑑𝑜 is the fixed output dimensionality. Finally, it
concatenates a one-hot encoding of the choice OneHot(𝑖, 𝑁).

Or(x, 𝑖) = W𝑖 x + b𝑖 ∥ OneHot(𝑖, 𝑁) (11)

3.2.6 Set. To encode a variable number of control vectors we use
the Set operator. This takes a variable-sized set of𝑀 (from a maxi-
mum of 𝑁) input control vectors of a uniform, predefined dimen-
sionality (representing the same control type), and encodes these
inputs using multi-headed self-attention, before concatenating an
encoding of the number of inputs provided as Count(𝑀, 𝑁), e.g.,
Count(3, 5) = [1 1 1 0 0].

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

Control Operators for Interactive Character Animation • 231:5

Fig. 2. Visual Overview of Control Operators. Here we show visual illustrations of our Basic Operators and examples of Control Operators defined in terms of
other Control Operators.

Set(x0, x1, ..., x𝑀−1) = h0 ∥ h1 ∥ ... ∥ h𝐻−1 ∥ Count(𝑀, 𝑁) (12)

h𝑗 = softmax
0≤𝑖<𝑀

(
Q K𝑇√︁
𝑑𝑘

)
V

q𝑖 = W𝑄 𝑗
x𝑖 + b𝑄 𝑗

k𝑖 = W𝐾𝑗
x𝑖 + b𝐾𝑗

v𝑖 = W𝑉𝑗
x𝑖 + b𝑉𝑗

Here, W𝑄 𝑗
∈ R𝑑𝑘×𝑑𝑖 , b𝑄 𝑗

∈ R𝑑𝑘 , W𝐾𝑗
∈ R𝑑𝑘×𝑑𝑖 , b𝐾𝑗

∈ R𝑑𝑘 ,
W𝑉𝑗

∈ R𝑑𝑜×𝑑𝑖 , b𝑉𝑗
∈ R𝑑𝑜 where 𝑑𝑖 is the dimensionality of the

input control vectors, 𝑑𝑘 is the dimensionality of the query vector,
𝑑𝑜 is the fixed output dimensionality for a single head 𝑗 , and 𝐻 is
the user-provided number of heads.

3.3 Additional Operators
Next, we give some representative examples of further useful oper-
ators that can be defined or derived from the basic set. While just a
few are given here, it should be clear that many more operators or
formulations are possible, e.g., Convolutional Operators that process
spatial grids.

3.3.1 Composite Types. Typed operators can be combined to build
operators encoding more complex object types, such as Transforms:

Transform(x ∈ R4×4) = And((13)

Location(x𝑝𝑜𝑠),
Rotation(x𝑟𝑜𝑡),

Scale(x𝑠𝑐𝑙))

By further composing typed operators in this way it is possible
to provide a library of pre-defined operators to users which they
can use to encode the state of complex objects in the scene such as
whole characters or props.

3.3.2 Fixed Array. We can encode a fixed-size array of 𝑁 controls
using the And operator on each element. This can be seen as a non-
variadic version of the And operator, which is a useful abstraction
in certain contexts.

FixedArray(x) = And(x[0] , x[1] , ..., x[𝑁−1]) (14)

3.3.3 Optional. When a control may-or-may-not be provided it
can be defined as an Or between that control and the empty vector
(a.k.a. the Null operator).

Optional(x, 𝑐) =
{
Or([], 0), if ¬𝑐
Or(x, 1), if 𝑐

(15)

In this case, the use of the empty vector will cause the following
linear transformation to output only the learnable bias.

3.3.4 Either. Similarly, we can define a convenient version of Or
for when only two options are possible.

Either(a, b, 𝑐) =
{
Or(a, 0), if ¬𝑐
Or(b, 1), if 𝑐

(16)

3.3.5 Inclusive Or. The Inclusive Or operator takes 𝑀 control vec-
tors as input from a fixed, predefined set of 𝑁 control vectors of
different dimensionalities. The indices of the controls from the set

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

231:6 • Gou et al.

which are provided are given by i ∈ I𝑀 .

InclusiveOr(x0, x1, ..., x𝑀−1, i) = And(y𝑖 , y𝑖+1, ..., y𝑁) (17)

y𝑖 =

{
𝑂𝑟 ([], 0), if 𝑖 ∉ i
𝑂𝑟 (x𝑗 , 1), if 𝑖 ∈ i, 𝑗 = IndexOf(𝑖, i)

3.3.6 Array. We can encode a variable-sized array of 𝑀 controls
(from a maximum of 𝑁) using the Set operator in combination with
the Index operator, I(𝑖) = Index(𝑖, 𝑁):
Array(x) = Set(I(0) ∥ x[0] , I(1) ∥ x[1] , ... , I(𝑀 − 1) ∥ x[𝑀−1]).

(18)

3.3.7 Dictionary. Similarly, we can encode a Dictionary of controls
using the Set operator on the concatenation of the corresponding
keys k and values v:

Dictionary(k, v) = Set(k[0] ∥ v[0] , k[1] ∥ v[1] , ... , k[𝑀−1] ∥ v[𝑀−1]).
(19)

3.4 Control Encoder Networks
The final Control Encoder Network for a specific behavior can be
defined as a composition of operators. In this section we give two
examples. For illustrations of all the Control Encoder Networks shown
in the results please see Fig 17.

3.4.1 Move to Target. The Control Encoder Network for the Move To
Target behavior (see Section 5.3), C𝑚𝑜𝑣𝑒 = MoveToTarget, can be
defined as follows:

MoveToTarget(x𝑝𝑜𝑠 , x𝑑𝑖𝑟 , 𝑐) = And(x𝑝𝑜𝑠 ,Optional(x𝑑𝑖𝑟 , 𝑐)),
(20)

where x𝑝𝑜𝑠 ∈ R3 is the target position, x𝑑𝑖𝑟 ∈ R3 is an optional
target facing direction, and 𝑐 ∈ B is a boolean to indicate if the
facing direction should be considered.

3.4.2 Trajectory Following. The Control Encoder Network for the
Trajectory Following behavior (see Section 5.2),C𝑡𝑟𝑎 𝑗 = TrajectoryFollow,
can be defined as follows:

TrajectoryFollow(t𝑝𝑜𝑠 , t𝑑𝑖𝑟) =

FixedArray([And(Location(t𝑝𝑜𝑠[𝑖]),Direction(t
𝑑𝑖𝑟
[𝑖])) | 0 ≤ 𝑖 < 𝑁]),

(21)

where t𝑝𝑜𝑠 ∈ R𝑁×3 is an array of future trajectory positions, and
t𝑑𝑖𝑟 ∈ R𝑁×3 is an array of future trajectory directions.

3.5 Implementation and User Workflow
While the equations defining Control Operators are relatively sim-
ple, implementing the framework in a way which is accessible to
non-technical users requires some consideration with respect to
user workflow. We introduced the workflow briefly in Section 3.1;
here, we describe each step in detail within the context of example
operators and the Control Encoder Network.
First, to allow for the pre-allocation of all the required buffers

and trainable parameters it is important to have a Control Schema
which describes all the possible structures of the controls which
are going to be provided as input to the controller (e.g. what are
all the potential possible inputs to an Or operator). Specifying this

trainsetup

Control
Schema

Training
Controls

Runtime
Controls

Motion
Capture
Data

Character
Controller

Gameplay
Input

controls
variables

paired
per frame

user
implemented
functions

Control
Encoder

Control
Encoder

at runtime

Character
Controller

Control
Encoder

(1) (2) (3)

Fig. 3. The user-facing workflow: (1) user specifies Control Schema using
control operators, (2) during training, Training Controls generate control
variables for each frame in the training data, (3) at runtime, gameplay inputs
are mapped via Runtime Controls to generate the animation.

Fig. 4. Draw-over illustrating how an example Runtime Controls Blueprint
Graph maps to a given set of Control Operators.

Control Schema using a Blueprint Graph is therefore the first step
for users in our implementation and allows our system to create the
Control Encoder Network without knowing exactly how it is going
to be linked to the training data or runtime variables.
Once this step is complete, users then build another Blueprint

Graph that specifies the Training Controls, i.e. the one-or-more con-
trol variables associated with each frame of animation in the training
data. Using this graph our system can gather pairs of input con-
trols and corresponding frames of animation, and at this point the
controller is ready to be trained by the user.
In the final step, users specify the Runtime Controls, again as a

Blueprint Graph. This graph defines how the control variables are
constructed at runtime from any relevant gameplay variables. This
is used every frame to gather the input variables from the gameplay
state and prepare them as input for the Control Encoder Network. For
a visual illustration of how this step maps to the visual language of
Control Operators used in the paper please see Fig 4.

For example screenshots of all the Blueprint Graphs used in these
three steps please see Fig 15.

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

Control Operators for Interactive Character Animation • 231:7

When mapping Control Operators to Blueprint Graph Nodes,
we found it more user-friendly and less bug-prone to use named
arguments rather than positional arguments for the variadic opera-
tors such as And, Or, and Inclusive Or. Users therefore also provide
argument names instead of indices when describing choices (i.e.
the name of the argument(s) instead of the index 𝑖 in Or and i in
Inclusive Or). Additionally, we found there was often some confu-
sion about the logic-oriented naming of the operators, so in our
implementation we use a more structure-oriented naming scheme,
where (for example), And is called a Struct Control, Or is an Exclusive
Union Control, and Inclusive Or is an Inclusive Union Control.

4 Controllers
Once the Control Schema has been defined by the user, we have a
Control Encoder Network which produces an encoded control vector
as output that can be plugged into any other neural-network-based
character controller as a conditioning variable (see Fig 5). In this
section we present the two state-of-the-art character controllers
which we use to demonstrate this.

4.1 Auto-Encoder
The design of both of our controllers begins with a small auto-
encoder used to encode character poses. The controllers then work
entirely in the latent space of this auto-encoder and the decoded
pose is only used for feedback of properties of the pose state as
control variables, (e.g. joint positions), and for rendering.
The auto-encoder abstracts away the pose representation and

produces a compact representation which accounts for error prop-
agation down the joint chain. It also encodes poses into a space
where each dimension has approximately the same magnitude and
standard deviation. We found this to be particularly helpful with
the training of the Flow Matching model.
We encode poses as vectors as follows: p = [¤r𝑡 ¤r𝑞 t ¤t q ¤q o],

where ¤r𝑡 ∈ R3 is the local root linear velocity, ¤r𝑞 ∈ R3 is the local
root angular velocity, t ∈ R3 is the local translation of the pelvis,
¤t ∈ R3 is the local linear velocity of the pelvis, q ∈ R𝐽 ·6 are the local
joint rotations stored in 2-axis format [Zhang et al. 2018] (where 𝐽 is
the number of joints), ¤q ∈ R𝐽 ·3 are the local joint angular velocities,
and o ∈ R∗ are any other additional variables that may be used in
the controllers such as foot contact labels or the time until certain
events.
To normalize this pose vector we subtract the mean and then

compute the average standard deviation of each type of variable
(e.g. linear velocities, angular velocities, translations, rotations) and
divide those variables by their respective standard deviations. Next,
we scale the joint rotations and angular velocities in the pose vec-
tor by the total length of the joint chain of all descendants. We
found this to be a much faster-to-train alternative to including a
forward kinematics loss [Andreou et al. 2022]. Finally, we include
per-variable loss weights, which we tune to make all components
of the pose vector contribute approximately equally to the loss at
the start of training.

Our Encoder Network E, and Decoder NetworkD, both consist of
a single hidden layer with 512 hidden units, using the ELU activation
function [Clevert et al. 2016] and use an encoded latent space of size

𝑑𝑧 = 128, z = E(p), p = D(z), z ∈ R𝑑𝑧 . We train the auto-encoder
for 250k iterations with a batch-size of 1024, and learning rate of
0.001 which decays linearly to zero during training. This takes ∼1
hour.

Once trained, we have a highly accurate auto-encoder that we can
use to encode poses into to a compact and well-behaved space. As
one final step, we normalize the encoded space of the auto-encoder
using the mean and the maximum of the standard deviation across
all latent dimensions. This prevents the overall scale of the latent
space from affecting the training of the controllers. See Fig 6 for a
visualization of the reproduction accuracy.

4.2 Latent Auto-Regressive Flow-Matching Model
Flow Matching [Liu et al. 2022], alternatively formulated as iterative
𝛼-(de)blending in Heitz et al. [2023], learns a continuous velocity
field that transports samples from one distribution to another.
Specifically, we use Flow Matching to transport samples from

the unit Gaussian distribution N(0, I) in the auto-encoder’s latent
space to samples from a conditional distribution over poses in the
auto-encoder’s latent spaceZ = {z0, z1, ..., z𝐹 }, where the condition
is given by the previous pose and any control variables that may be
used.

To begin, let z̃ ∼ N(0, I) ∈ R𝑑𝑧 be a sample from the unit Gaussian
distribution in the auto-encoder’s latent space. Let (z𝑓 , z𝑓 −1) ∼
Z be a pair of consecutive frames randomly sampled from the
distribution of poses in the auto-encoder’s latent space, and v𝑓
be any corresponding control variables constructed using the user
provided Training Controls function (see Section 3.5).

If we define the linear interpolation between z̃ and z𝑓 for a given
time 𝑡 as follows:

z̄ = (1 − 𝑡) z̃ + 𝑡 z𝑓 , 𝑡 ∈ [0, 1], (22)

then our goal is to train a time-dependent velocity modelV , called
the Flow Network, that outputs 𝑑 z̄

𝑑𝑡
for all 𝑓 , 𝑡 , and z̃. To achieve this

we must minimize the mean-squared error between the network’s
predicted velocity and the velocity from the random sample z̃ toward
the target distribution sample z𝑓 :

L𝜃V ,𝜃C = E 𝑓 , 𝑡, z̃

V (

z̄, ẑ𝑓 −1, C(v𝑓), 𝑡
)
− (z𝑓 − z̃)

2
2, (23)

where the Flow NetworkV takes as input the blended sample z̄, the
previous posewith noise added ẑ𝑓 −1 (described below), the encoding
of the control variables v𝑓 using the Control Encoder Network C,
and the time 𝑡 . The above objective can be minimized via standard
stochastic gradient descent with respect to the parameters of the
Flow NetworkV and Control Encoder Network C together.
Since auto-regressive generation often suffers from distribution

drift due to the accumulation of small errors, generation is unstable
when trained only on pairs of frames (z𝑓 , z𝑓 −1). To address this,
we instead train using a noised version of the previous frame ẑ𝑓 −1 -
which is created by adding random Gaussian noise to previous pose
z𝑓 −1, scaled by a uniform random variable 𝛼 sampled between 0
and some user-provided maximum 𝛼𝑚𝑎𝑥 . Noise augmentation has
been found to be a simple and effective technique for improving
the robustness of sequential policy cloning [Xie et al. 2020] and
pre-training diffusion models [Chen et al. 2024a]. Compared to prior
methods which use scheduled sampling [Shi et al. 2024; Zhao et al.

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

231:8 • Gou et al.

Flow Network

Control Encoder

Or

TrajectoryFollow

MoveToTarget

SitToWalk

WalkToSit

JumpToTarget

PickUp

Dance

Encode

Encode

Encode

Encode

Encode

Encode

Encode

Location

Boolean

And

()

And

OneHot

Direction

Location And
FixedArray

Style

Flow Matching

C f

Learned Motion Matching

Projector
Network

Zf...f+7

(0, I)

Zf

C
f

Zf-1

t, Z~

Fig. 5. A diagram showing how our interactive character controllers function at runtime with an example multi-behavioral input. At each frame, user inputs
(gamepads, keyboards, mice etc.) are processed by the Control Encoder Network, and passed to either (1) a Flow Network to generate the current latent pose 𝑧𝑓
conditioned on previous latent pose 𝑧𝑓 −1 and the encoded control 𝑐 𝑓 ; or (2) a Projector Network to produce the next 8-frame segment of animation. Both
models run auto-regressively in the latent pose space.

Fig. 6. Visualization of the character skeleton and reproductions of our
auto-encoder. Our trained auto-encoder is highly accurate and typically
produces joint position errors of <1cm, even at the end of joint-chains. Red:
Ground Truth, Green: Reproduction. Skinned mesh shown on reproduction.

2024], and therefore incur computational overhead from running in-
ference during training, our approach improves generation stability
without extra iterative steps in the training, resulting in much faster
training. We found that in certain cases results could be improved
by applying similar noise to input control variables v𝑓 , however this
was not essential. For a full description of the training algorithm
please see Algorithm 1.
Once trained, we can randomly sample a value z from the unit

Gaussian distribution N(0, I) and then numerically integrate the
velocities produced by the velocity model V from 𝑡 = 0 to 𝑡 =

1 to transport it to a random sample in the desired conditional
distribution over Z. In our case, a small fixed number of discrete
Euler integration steps 𝑆 = 4 worked quite effectively (see Table 2).
For a precise description of the inference algorithm see Algorithm 2.

Optionally, one can distill the trained Flow NetworkV to enable
one-step inference. The distillation objective minimizes the mean-
squared-error between V’s 𝑆-step integrated velocity prediction

Algorithm1:Training algorithm for FlowNetworkV .While
this is presented for a single element, training is performed
on mini-batches.
Function TrainFlow(z𝑓 , z𝑓 −1, v𝑓 , 𝜃V , 𝜃C , 𝛼𝑚𝑎𝑥):

/* Sample from unit Gaussian */

z̃ ∼ N(0, I) ∈ R𝑑𝑧
/* Sample uniform time value 𝑡 */
𝑡 ∼ U(0, 1) ∈ R
/* Add noise to previous pose */

𝜎 ∼ N(0, I) ∈ R𝑑𝑧
𝛼 ∼ U(0, 𝛼𝑚𝑎𝑥) ∈ R
ẑ𝑓 −1 ← z𝑓 −1 + 𝛼 𝜎

/* Compute linear interpolation */
z̄← (1 − 𝑡) z̃ + 𝑡 z𝑓
/* Compute Loss */

L ← ∥ V
(
z̄, ẑ𝑓 −1, C(v𝑓), 𝑡

)
− (z𝑓 − z̃)

2
2,

/* Update network parameters */

𝜃V , 𝜃C ← RAdam(𝜃V , 𝜃C,∇L)
end

and a distilled versionV′’s velocity prediction at 𝑡 = 0:

L𝜃V′ = E 𝑓 , z̃

 1
𝑆

𝑆−1∑︁
𝑠=0
V

(
z̄, ẑ𝑓 −1, C(v𝑓),

𝑠

𝑆

)
−V′

(
z̄, ẑ𝑓 −1, C(v𝑓), 0

)

2
2,

(24)
Such distillation effectively reduces the runtime cost to one network
evaluation.
Our Flow Network V is similar in design to the Denoiser net-

work in Shi et al. [2024] and consists of a Multilayer Perceptron
with 8 hidden layers with 800 hidden units, using the GELU acti-
vation function [Hendrycks and Gimpel 2016], with Layer Normal-
ization [Ba et al. 2016] placed before each internal linear layer, and

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

Control Operators for Interactive Character Animation • 231:9

Algorithm 2: Inference algorithm for Flow NetworkV .
Function InferenceFlow(z𝑓 −1, v𝑓 , S):

/* Compute encoded control vector c */
c𝑓 ← C(v𝑓)
/* Sample initial z from unit Gaussian */

z ∼ N(0, I) ∈ R𝑑𝑧
/* Integrate velocity using V */

for 𝑠 ← 0 to S - 1 do
z← z + 1

𝑆
V

(
z, z𝑓 −1, c𝑓 , 𝑠𝑆

)
end
return z

end

skip-connections which concatenate the input to each hidden layer.
We train the Flow Network for 500k iterations, with a batch-size
of 4096 and a learning rate of 0.001 which decays linearly to zero
over the course of training. We use a previous pose noise scale of
𝛼𝑚𝑎𝑥 = 0.25. Distillation uses the same set of hyper-parameters. Full
training takes between ∼5 and ∼20 hours on an NVIDIA GeForce
RTX 3080 depending on the complexity of the controller. The model
begins to be usable as an interactive controller after approximately
10k iterations which generally takes 10-15 minutes. This is suffi-
cient for iterating control-related designs as the remaining training
iterations improve motion quality.

4.3 Segment-Based Learned Motion Matching
Because Control Operators allow for more flexible conditioning than
a simple fixed vector of feature values, the exact setup described in
Holden et al. [2020] is no longer appropriate. For that reason we use
an adjusted formulation, making use of the auto-encoder described
in Section 4.1.
First, we sample 1,000k random examples of controls from the

user-provided Training Controls Blueprint Graph and add a small
amount of random noise to all of the variables. Second, we pass
these controls to a user-defined Matching Function Blueprint Graph.
This allows us to build pairs of control inputs v and their associated
best matching frame in the database z. For a visual example of
what this Matching Function looks like in Blueprints see Fig 16. For
controls consisting of a simple flat vector this could also potentially
be derived automatically.
For every frame matched in the database we sample a short seg-

ment of animation made up of the following 8 frames, and con-
catenate the encoded pose vectors z for these 8 frames together
to produce one larger vector w ∈ R8·𝑑𝑧 . This represents our final
training pairs consisting of control inputs v, and associated matched
Motion Segments made up of blocks of 8 frames in the encoded pose
space w.
From this dataset, we train in a standard supervised fashion a

Projector network P which takes as input the output of the Control
Encoder Network C, and produces the associated segment of anima-
tionw. In this sense our Projector Network P acts as a combination
of the Stepper and the Projector in the original paper.

Our Projector Network P, consists of a 9 hidden layers with 1536
hidden units, using the GELU activation function [Hendrycks and

Gimpel 2016]. We train the Projector Network for 1,000k iterations,
with a batch-size of 512, and learning rate of 0.001 which decays
linearly to zero over the course of training. This takes ∼20 hours
for the most complex controller on an NVIDIA GeForce RTX 3080.
Once trained, at runtime, every 8 frames, we simply evaluate

the Control Encoding Network C on the user input, followed by the
Projector Network P, and begin playing the next segment, using
inertialization to remove any discontinuity and preserve smooth-
ness [Bollo 2016, 2017].
We found that results could be further improved by recording

the controls used during an interactive play session, sampling an
additional 1,000k random control variables v from this recording,
adding noise to these recorded controls, before re-matching them
and appending the matched training examples to the original dataset
- finally re-training the Projector Network.

5 Results
In this section we show results of our method, conditioning both
controllers on controls with varying level of complexity. Readers are
encouraged to watch the supplementary video for a more in-depth
analysis.
Most results are shown on an internal dataset unless otherwise

noted. This internal dataset consists of about 3 hours and 40 minutes
of high quality optical motion capture data. This data is sampled
at 60Hz and includes finger and toe motion. It is retargeted onto
the character shown in the paper using MotionBuilder. It mostly
consists of locomotion (walking, running, etc), including around 1.5
hours of stylized walks in roughly 30 different styles. It also includes
about 30 minutes of interactions such as opening doors, sitting on a
chair, picking up objects, etc - as well as jumping and dancing. For
results on openly available datasets such as 100STYLE [Mason et al.
2022], and the Motorica Dance Dataset [Alexanderson et al. 2023;
Valle-Pérez et al. 2021], please see supplementary video.

All results shown have two simple procedural adjustments ap-
plied. First, we use the predicted contact labels to apply some simple
foot-locking and inverse kinematics which helps reduce foot sliding.
Second, when we update the pose we use an interpolation between
the estimated joint rotations, and the integration of the estimated
joint angular velocities applied to the previous frame’s joint rota-
tions. We find that blending these estimations using a weight of
0.25 for rotations and 0.75 for integrated angular velocities was
quite effective at removing residual noise from the Flow Matching
process.
For a visual depiction of the control operators used in each task

see Fig 17.

5.1 Uncontrolled Generation
In Fig 7 we show some results of our Flow Matching model applied
to uncontrolled generation, showing the diversity of the generated
results. In Fig 8 we show some analysis of the diversity of the gen-
eration of our method by visualizing root trajectories.

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

231:10 • Gou et al.

Fig. 7. Results of our method applied to uncontrolled generation. Snapshot
of several different animations generated from the same initial pose with
no additional control variables.

Fig. 8. Diverse root trajectories generated from the same initial frame
using our uncontrolled Flow Matching model. All trajectories are plotted
in meters, with the start frame marked by a star and the initial facing
direction indicated by a quiver. The end state is marked by a square. Points
are sampled every 10 frames to highlight speed variations.

5.2 Locomotion
In Fig 9 we show some results of our method applied to locomotion
generation. For additional locomotion results on the 100STYLE
dataset please see supplementary video.

5.3 Interactions
In Fig 10 we show some results of our method applied to interactions
including jumping to a target, sitting down and getting up from a
chair, and picking up objects.

5.4 Multi-Behavior Control
In Fig 1we showhowourmethod can be used to trainmulti-behavior
controllers. Here we show many of the previously shown behaviors
combined into a single controller and neural network.

Fig. 9. Results of our method applied to locomotion tasks. Top Left: Trajec-
tory Following, Top Right: Path Following, Bottom Left: Stylized Locomotion,
Bottom Right: Desired Velocity and Facing Direction.

Fig. 10. Results of our method applied to interaction tasks. Top Left: Sitting
Down, Top Right: Getting Up, Bottom Left: Jump to Target, Bottom Right:
Pick-up Object.

6 Evaluation
We evaluate the effectiveness of our approach with a user study,
an examination of the role of the Control Encoder Network, an abla-
tion over some of the design decisions of the Flow-Matching-based
model such as performing Flow Matching in the latent motion space
and the use of skip connections, and an evaluation of the runtime
performance and memory usage.

6.1 User Study
We conduct a user study of industry practitioners with 9 participants,
consisting of 3 animation programmers, 2 technical animators /
designers, 1 animation director, 2 researchers, and 1 animation QA
(Quality Assurance) analyst. Expertise varied significantly across
domains, with technical animators and designers tending to have
strong Unreal Engine familiarity but no technical programming
or machine learning expertise, and researchers having machine
learning expertise but often little-to-no knowledge of Unreal Engine

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

Control Operators for Interactive Character Animation • 231:11

Fig. 11. Comparison between our system, Motion Matching and Animation
Blueprints across five user-rated metrics on a 5-point Likert scale. Violin
width indicates response frequency, center bar indicates mean. Note that
for Iteration Time: 1 = slow, 5 = fast.

or Blueprints. The study thus included both technical specialists
and non-technical users.
Participants were asked to complete a tutorial introducing our

system’s workflow (see Supplemental Material), where they created
a move-to-target controller, designed the behavior using Control Op-
erators, and trained and tested the Flow-Matching-based interactive
animation controller. The tutorial also encouraged them to explore
by extending the controller with customized functionality, such as
adding walk/run control. After completing the tutorial, participants
filled out a questionnaire rating our system on a 5-point Likert scale
for accessibility, scalability, achievable motion realism, iteration
time, and controllability as well as providing qualitative feedback.
Iteration time here refers to how quickly users can test and refine
their design during each controller development. Participants that
were familiar with Motion Matching and Animation Blueprints [Un-
real 2022a], both machine-learning (ML) free methods, were asked
to compare these to the provided system on the aforementioned
criteria.
Despite their varied backgrounds, all participants were able to

successfully complete the tutorial and build functioning move-to-
target controllers with a reported average time taken of roughly
1.5 hours (excluding model training time). Participants rated the
difficulty of following the tutorial as relatively low (mean of 1.9/5)
and rated their confidence at building another controller using the
same system as 3.1/5.
As shown in Fig 11 users rate our system competitively across

all measured metrics, particularly in terms of scalability which is
a main strength compared to non-machine-learning-based alter-
natives. Users rated our system’s accessibility better than Motion
Matching and comparable to Animation Blueprints. Motion realism
was rated as similar to Motion Matching and better than Animation
Blueprints. The controllability and iteration time ratings do not
show significant variations across methods.

The similar iteration time ratings across different systems reflect
that once set up, all kinds of controllers take similar amounts of time
to tweak and refine. Nonetheless, when asked how long it would

take to build a comparable controller from scratch using either
Animation Blueprints or Motion Matching (with access to tutorials
and data), participants generally estimated several days of work
as opposed to a few hours using our ML-based system, although
responses had wide variation. This also reflects that for all systems
achieving high-quality output still demands multiple iterations as
the parameters of the systems and the controls provided can affect
the results.
Qualitative feedback highlighted several strengths and weak-

nesses of our system. Multiple participants emphasized its flexibility
and accessibility, with responses noting it is “very flexible and easy
to design controllers for varied tasks”, “possible to create models
without deeply understood machine learning concepts”, “no need
for programming. Even people with non-technical background can
also handle it with sufficient training”. Participants also mentioned
the efficiency with comments such as “you get a long way (to a
working but unpolished result) with comparatively little work after
the data is captured and tagged”. One participant stated it would be
their “preferred method of producing an animation system for high
fidelity human motion in most scenarios”.

When asked how it compared to other machine-learning systems,
feedback on Control Operators was positive: “I can see that this
system has the benefit of 1) being integrated into an engine, 2) being
modular and easily extensible and 3) supporting different types of
goals and not being specific to one type of control or goal.”, “It is
more technical than systems like the text-to-animation prompting
tools, but less technical than the majority of systems that are only
available as code or papers.”

Participants also identified limitations, primarily centered around
aspects of the workflow. Some users had doubts over the ability to
fine tune the system: “it seems not as directly tunable as animation
blueprints or motion matching (when hitting a problem, we can’t
just dig into the Neural Network to find the cause)”, however the
most frequently mentioned concern was the training time, with one
representative response pointing out that “although this is one-time,
during development if there is a logical error in the controller, it
could be 5 hours before you realize”. As this is a common limitation
across almost all machine-learning-based methods, more discussion
on ideas to tackle this limitation are included in Section 7.

For the full set of quantitative results, the tutorial document itself,
and a time-lapse showing the process involved in completing the
tutorial, please see the additional supplementary material.

6.2 Control Encoder Network
To evaluate the impact of the Control Encoder Network we perform
three experiments. First, we compare our method to using a hand-
crafted control vector. Second, we examine how the Control Encoder
Network represents different controls in its encoding space. Finally,
we run an experiment to assess generalization capabilities.

6.2.1 Hand-crafted Control Vector. In this experiment we remove
the Control Encoder Network and design a hand-crafted control vec-
tor for use in the multi-behavior task which includes all the possible
variables plus one-hot encodings of flags to indicate the exact con-
figuration of variables provided and in what combinations.

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

231:12 • Gou et al.

Fig. 12. Experiment showing thatControl Operators can learn tomap similar
controls to the same encoding. Here, the 8-dimensional control encoding
is visualized using the vertical positions of the white balls. Left: Move To
Target. Right: Trajectory Following. From top to bottom: Turning Right,
Turning Left, and Walking Forward.

We find that the hand-crafted control vector performs similarly to
the Control Encoder Network, with perhaps slightly reduced motion
quality. This small reduction in quality might be explained by the re-
moval of the extra weight matrices and transformations introduced
by the Control Encoder Network. In this sense we find that Control
Operators do not necessarily provide better quality than carefully
hand-crafted control vectors - they simply abstract the design in a
way that makes it accessible to non-technical users.

6.2.2 Control Encoding. Next, we train a controller to perform
both the Move To Target task, and the Trajectory Following task,
using the Encode operator to encode the final control vector as an
8-dimensional vector. Our hypothesis is that the Control Encoder
Network can learn to map both Trajectory Following and Move To
Target control inputs to a similar encoding, allowing it to re-use
the core Flow Network for both tasks. To test this we visualize the
result for different control inputs. We find that controls which imply
similar motions, e.g. a trajectory turning to the left vs a target placed
to the left of the character, map to similar representations in the
encoded control space. See Fig 12 for details.

6.2.3 Generalization. In the final experiment, we again train a con-
troller to perform both the Move To Target task, and the Trajectory
Following task, however we also include a one-hot control variable
to indicate the locomotion style and train on stylized locomotion
data. We observe that even though the system is only trained on
the Move To Target task using the Neural style, because it is also
trained on the Trajectory Following task with multiple styles, it is
capable of generalizing and performing Move To Target in a stylized

Fig. 13. Experiment showing cross-task generalization. Even though the
model was only trained on theMummy style of locomotion for the Trajectory
Following task (Right), it is able to generalize and apply this style to the
Move To Target task (Left).

way. This shows the Control Encoder Network can learn to gener-
alize between tasks - a distinct advantage over training individual
networks per-task. See Fig 13 for more details.

6.3 Ablations
In this section we quantitatively evaluate motion artifacts including
foot sliding, ground penetration distance and frequency, and jitter-
iness. Foot sliding is measured as the average distance per frame
each toe joint moves when the predicted contact label is active. The
contact label is active in the ground truth when the speed of the toe
joint is below 20 cm/s, and the height is below 20cm.Ground penetra-
tions for the toe and heel are quantified by the average penetration
distance per frame as well as the penetration frequency, which rep-
resents the percentage of frames where the joint falls below the
penetration height threshold. This threshold is calibrated to ensure
close-to-zero penetration in clean ground truth data, accounting
for discrepancies between the joint location and the skinned mesh.
Jitteriness is quantified by the average magnitude of the per-frame
accelerations of the joint positions, which empirically correlate well
with the visual jitteriness of the motion.

As well as measuring these quantities for our proposed method
we ablate three aspects of our method. First, the use of Layer Normal-
ization [Ba et al. 2016] in the network structure. Second, removing
the auto-encoder and performing Flow Matching in the raw pose
space, and third, removing skip connections from the flow network.
In all cases we run the evaluation over uncontrolled generation. For
numerical results please see Table 1.

6.3.1 Layer Normalization. As shown in Table 1, we found that
Layer Normalization did improve the quality and stability of our
controller, however we did not find it was essential to a function-
ing controller, and the improvement in quality and stability was
somewhat marginal.

6.3.2 Pose-Space Flow-Matching. In this experiment we trained the
Flow Matching model on the raw pose vectors p, normalized using
the per-dimension mean and standard deviation computed across
the training dataset.
We observed that on our internal dataset, the auto-regressively

generated motion sometimes became unstable and could explode
when going far out-of-distribution. In the cases where it remained
stable, themotions are of lower quality compared to the latent model,
as shown in Table 1. We also observed that the stable generations
tended to be limited to locomotion, and were prone to “die out”

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

Control Operators for Interactive Character Animation • 231:13

Table 1. Evaluations of common motion artifacts. We compare the performance of our method, Latent Auto-Regressive Flow-Matching (LAFM), to versions
with the following components removed: Layer Normalization (LayerNorm), the Auto-Encoder Latent space (Latent), and Skip-Connections (Skip). This
comparison is performed on our Internal Dataset, and the 100STYLE dataset. Statistics were computed from 100 randomly selected frames, each used to
generate 20 auto-regressive rollouts lasting 20 seconds, starting from that initial frame. Measurements are taken without procedural adjustments applied.

F. S.(cm) ↓ Jitteriness (cm/s2) ↓ Toe pen. (cm) ↓ Toe pen. freq. % ↓ Heel pen. (cm) ↓ Heel pen. freq.% ↓
Internal Dataset
Ground Truth 0.091 ± 0.027 0.167 ± 0.095 0.007 ± 0.027 0.434 ± 1.404 0.001 ± 0.007 0.085 ± 0.484
LAFM 0.249 ± 0.071 0.330 ± 0.111 0.003 ± 0.008 0.245 ± 0.650 0.001 ± 0.003 0.096 ± 0.249
w/o LayerNorm 0.285 ± 0.053 0.439 ± 0.070 0.003 ± 0.008 0.243 ± 0.603 0.001 ± 0.003 0.077 ± 0.177
w/o Skip 0.532 ± 0.195 0.912 ± 0.415 0.040 ± 0.051 1.763 ± 2.014 0.016 ± 0.020 0.933 ± 1.016
w/o Latent 0.960 ± 0.658 2.792 ± 2.163 1.638 ± 1.528 24.471 ± 21.590 1.047 ± 1.006 18.795 ± 16.883

100STYLE
Ground Truth 0.064 ± 0.018 0.152 ± 0.090 0.000 ± 0.001 0.011 ± 0.075 0.000 ± 0.001 0.013 ± 0.104
LAFM 0.212 ± 0.052 0.467 ± 0.119 0.000 ± 0.001 0.104 ± 0.214 0.001 ± 0.002 0.219 ± 0.488
w/o LayerNorm 0.285 ± 0.073 0.737 ± 0.339 0.015 ± 0.052 0.807 ± 2.830 0.008 ± 0.025 0.508 ± 0.996
w/o Skip 0.478 ± 0.115 1.038 ± 0.192 0.001 ± 0.003 0.054 ± 0.126 0.002 ± 0.011 0.372 ± 1.752
w/o Latent 0.191 ± 0.059 0.381 ± 0.179 0.026 ± 0.062 0.664 ± 1.342 0.017 ± 0.036 0.657 ± 1.218

Table 2. Motion quality of the Latent Auto-Regressive Flow-Matching
model saturates at 4 to 8 integration steps (𝑆).

𝑆 F.S. ↓ Jitteriness ↓
1 0.458 1.12
2 0.271 0.420
4 0.250 0.368
8 0.257 0.364
16 0.260 0.367
32 0.290 0.480

(a) Without latent space (b) Without skip connections

Fig. 14. Comparison of root trajectories generated from ablation experi-
ments. (a) without using the auto-encoder’s latent space. The left plot starts
with a pose in the middle of a walking motion, while the right plot starts
with an idle pose. (b) without skip connections. The left plot shows a circling
skating motion, while the right plot illustrates gliding with a static pose.

quickly; as demonstrated in Fig 14 (a), most samples ended up in a
standing pose and thus stopped early. On the contrary, the latent
FlowMatchingmodel can generate good quality and diversemotions
not limited to locomotion, for as long as needed.
If trained with a larger network (e.g. 10 layers, 1024 neurons),

we did see an improvement on the generation stability, while the
other issues persist with a slight improvement. This suggests that
the latent encoding may help with the expressiveness when using
a lightweight Flow Matching network. This is consistent with the
hypothesis in Rombach et. al. [2021] that latent encoding can com-
press perceptual details and therefore the diffusion model (in our

case the Flow Matching model) requires less capacity as it focuses
on only semantic compression.

We also note that while previous work [Chen et al. 2024b; Shi et al.
2024] has shownmore success in the pose-space, one possible reason
why we might not have been able to produce as good results on the
internal dataset is that our pose-space is considerably larger than in
previous work, containing finger joints and additional information
that may be difficult to model effectively. For example, we found
that on the 100STYLE dataset, which does not contain finger joints,
the use of the latent space was far less impactful for achieving
high quality results, and for certain metrics even performed slightly
worse.

6.3.3 Skip-Connections. We found that removing skip-connections
made our results considerably more noisy and unstable. Fig 14(b)
shows sample trajectories generated using a Flow Matching model
without skip-connections. The motions sometimes either drift or
explode.

6.4 Performance
In Table 3 we evaluate the performance of our controllers in terms
of CPU and memory cost. All networks are evaluated on the CPU.
All performance measures were taken single-threaded on an AMD
Ryzen Threadripper PRO 3995WX 64-Cores 2.7 Ghz. In general we
find that thememory andCPU impact of theControl Encoder Network
is minimal compared to the Flow Network or Projector Network.

7 Discussion & Limitations
LearnedMotionMatching and Auto-Regressive Flow-Matching each
have distinctive benefits and limitations. A key difference between
the two is that Learned Motion Matching does not try to interpolate
or extrapolate from the training data. The advantage here is that it
sticks more closely to what was provided during training, while the
disadvantage is that it cannot adapt as well to slight variations in the
desired control variables such as speed changes. Auto-Regressive
Flow-Matching can feel more responsive too as it changes based

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

231:14 • Gou et al.

Table 3. Memory usage and evaluation time of the different networks used
as well as the total memory usage and the average per-frame runtime cost
of different controller systems. Since the Control Encoder Network C size
varies depending on the controls used we report the largest size used. Note
that the learned motion matching Projector Network P is only evaluated
every 8 frames.

Network Memory (MB) Runtime (ms)
Control Encoder C <0.63 <0.025
Pose Encoder E 1.42 0.062
Pose Decoder D 1.40 0.057
Projector P 19.38 2.913
FlowV 23.61 0.702
System

4-Step Flow-Matching 27.06 2.890
Distilled Flow-Matching 27.06 0.784
Learned Motion Matching 22.83 0.446

on control variables every frame, while Learned Motion Matching
may only respond every 8 frames. From the standpoint of a game
designer or animator, we find Auto-Regressive Flow-Matching to
be simpler to set up as it does not require a user-defined Matching
Function and has fewer variables and parameters to tweak. How-
ever, this is at the expense of some controllability. Auto-Regressive
Flow-Matching handles much better the case of under-specified con-
trols, where Learned Motion Matching can end up jumping between
many different parts of the data and does not produce a balanced
variety of animations. Finally, while our version of Learned Motion
Matching has a relatively high performance cost every 8 frames,
Auto-Regressive Flow-Matching has a slightly lower performance
cost that is paid every frame for inference.

When the character is stationary, the Flow Matching model still
exhibits some residual noise in the output, even with the proposed
procedural adjustments. We also find that both models can occasion-
ally struggle when there is poor data coverage. In such scenarios,
the Motion Matching model performs better, but the Flow Matching
model can sporadically get stuck in a situation where the character
floats or remain stationary when provided with control inputs out-
side of the training data, e.g., a trajectory which is moving too fast
or a target location which is not in the training data.
Although Control Operators allow users to effectively describe

the inputs to a Motion Generation Model, they do not address other
aspects of training machine-learning-based character controllers
such as custom loss functions, data pre-and-post-processing, and
multi-stage training setups.

As shown in Section 6.1, iteration time remains a problem shared
by all machine-learning-based methods. However, we found there
are several design choices in our implementation that can help here.
First, we carefully choose a set of default hyper-parameters which
we keep fixed (including for all results shown in this paper) and
limit our system to simple network architectures. Second, we allow
interactive testing during training. Training starts to produce noisy
yet responsive motion in under 15 minutes, which provides a pre-
view of resulting controller that the user can iterate on. Finally, we

allow users to examine and curate the training data before training
to help avoid data-based mistakes before training.

Faster iteration can also be enabled by only retraining the control
encoder network. During our experiments we observed that a dis-
tilled Flow Matching model can also be conditioned via the initial
noise sample, rather than via concatenating the encoded control
vector. It is therefore possible to use an uncontrolled Flow Matching
controller as a kind of generative prior over all possible frame-to-
frame transitions and have the Control Encoder Network output the
initial noise sample distribution instead. Using this setup we found
it is possible to reuse the Flow Network between controllers, and
retrain only the lightweight Control Encoder Network, allowing for
quick training of new behaviors in just a couple of minutes. Specifi-
cally, we first train a Flow Network for uncontrolled generation as
described in Section 5.1, and then freeze its weights. For each new
behavior, we build a corresponding Control Encoder Network, whose
output can be interpreted as the mean and log-standard deviation of
the initial random sample z̃. We then optimize the encoder’s param-
eters using the same Flow Matching loss. At the start of training,
the controller produces random motion samples; after only a few
updates (as few as one for a simple trajectory-following controller),
the Control Encoder Network learns to generate initial samples that
follow the control inputs. It is worth noting, however, that training
a complex multi-behavior controller (such as the Uber controller)
with this approach yields lower accuracy and stability compared to
the original end-to-end version, likely due to the lack of guarantees
for a well-structured initial noise sample space. We include some
preliminary result from this experiment in the supplementary video.
A key part of building character controllers for video games is

the management of responsiveness and “game feel”. An interesting
extension to Control Operators would be to provide a framework
for linking the properties of the desired movement model to the
produced animation, giving designers precise control over key as-
pects of the movement such as accelerations, response times, and
movement speeds.

8 Conclusion
We have introduced Control Operators, a method for designing the
control of neural-network-based interactive character controllers.
We demonstrated its potential using two current state-of-the-art
character controllers, showing that our method allows designers to
build controllers that can readily perform multiple different behav-
iors via a number of different control mechanisms within realistic
runtime budgets.
In the future, we expect that Control Operators could also be

applied in many other domains such as physics-based character ani-
mation and more generally we expect that in order to make further
inroads into the industry, it will become increasingly important to
develop abstractions that enable designers and non-technical users
to leverage learning-based systems without needing expertise in
neural networks. Control Operators are a first step along this path.

Acknowledgments
We thank all participants of our user study for their valuable time
and feedback.

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

Control Operators for Interactive Character Animation • 231:15

References
Shailen Agrawal and Michiel van de Panne. 2016. Task-based locomotion. ACM

Trans. Graph. 35, 4, Article 82 (July 2016), 11 pages. https://doi.org/10.1145/2897824.
2925893

Simon Alexanderson, Rajmund Nagy, Jonas Beskow, and Gustav Eje Henter. 2023.
Listen, Denoise, Action! Audio-Driven Motion Synthesis with Diffusion Models.
ACM Trans. Graph. 42, 4, Article 44 (2023), 20 pages. https://doi.org/10.1145/3592458

N. Andreou, A. Aristidou, and Y. Chrysanthou. 2022. Pose Representations for Deep
Skeletal Animation. Computer Graphics Forum 41, 8 (2022), 155–167. https://doi.org/
10.1111/cgf.14632 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14632

Tenglong Ao, Zeyi Zhang, and Libin Liu. 2023. GestureDiffuCLIP: Gesture Diffusion
Model with CLIP Latents. ACM Trans. Graph. (2023), 18 pages. https://doi.org/10.
1145/3592097

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normalization.
CoRR abs/1607.06450 (2016). arXiv:1607.06450 http://arxiv.org/abs/1607.06450

Florent Bocquelet, Boris Oreshkin, Felix Harvey, Louis-Simon Ménard, Dominic
Laflamme, Bay Raitt, and Jeremy Cowles. 2022. AI and Physics Assisted Char-
acter Pose Authoring. In ACM SIGGRAPH 2022 Real-Time Live! (Vancouver, BC,
Canada) (SIGGRAPH ’22). Association for Computing Machinery, New York, NY,
USA, Article 3, 2 pages. https://doi.org/10.1145/3532833.3538680

David Bollo. 2016. Inertialization: High-Performance Animation Transitions in ’Gears
of War’. In Proc. of GDC 2018.

David Bollo. 2017. High Performance Animation in Gears of War 4. In ACM SIGGRAPH
2017 Talks (Los Angeles, California) (SIGGRAPH ’17). ACM, New York, NY, USA,
Article 22, 2 pages. https://doi.org/10.1145/3084363.3085069

Michael Büttner. 2019. Machine Learning for Motion Synthesis and Character Control
in Games. In Proc. of i3D 2019.

Michael Büttner and Simon Clavet. 2015. Motion Matching - The Road to Next
Gen Animation. In Proc. of Nucl.ai 2015. https://www.youtube.com/watch?v=
z_wpgHFSWss&t=658s

Cascadeur. 2023. Cascadeur. https://cascadeur.com/
Hao Chen, Yujin Han, Diganta Misra, Xiang Li, Kai Hu, Difan Zou, Masashi Sugiyama,

JindongWang, and Bhiksha Raj. 2024a. Slight Corruption in Pre-training DataMakes
Better Diffusion Models. arXiv:2405.20494 [cs.CV] https://arxiv.org/abs/2405.20494

Rui Chen, Mingyi Shi, Shaoli Huang, Ping Tan, Taku Komura, and Xuelin Chen.
2024b. Taming Diffusion Probabilistic Models for Character Control. In ACM
SIGGRAPH 2024 Conference Papers (Denver, CO, USA) (SIGGRAPH ’24). Associ-
ation for Computing Machinery, New York, NY, USA, Article 67, 10 pages. https:
//doi.org/10.1145/3641519.3657440

Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao Chen, Jingyi Yu, and Gang
Yu. 2023. Executing Your Commands via Motion Diffusion in Latent Space. https:
//doi.org/10.48550/arXiv.2212.04048 arXiv:2212.04048

Kyungmin Cho, Chaelin Kim, Jungjin Park, Joonkyu Park, and Junyong Noh. 2021.
Motion recommendation for online character control. ACM Trans. Graph. 40, 6,
Article 196 (Dec. 2021), 16 pages. https://doi.org/10.1145/3478513.3480512

Simon Clavet. 2016. Motion Matching and The Road to Next-Gen Animation. In Proc.
of GDC 2016.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2016. Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs). In 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http:
//arxiv.org/abs/1511.07289

Setareh Cohan, Guy Tevet, Daniele Reda, Xue Bin Peng, and Michiel van de Panne. 2024.
Flexible Motion In-betweening with Diffusion Models. In ACM SIGGRAPH 2024
Conference Papers (Denver, CO, USA) (SIGGRAPH ’24). Association for Computing
Machinery, New York, NY, USA, Article 69, 9 pages. https://doi.org/10.1145/3641519.
3657414

Wenxun Dai, Ling-Hao Chen, Jingbo Wang, Jinpeng Liu, Bo Dai, and Yansong Tang.
2024. MotionLCM: Real-time ControllableMotion Generation via Latent Consistency
Model. arXiv:2404.19759 [cs]

Zhiyang Dou, Xuelin Chen, Qingnan Fan, Taku Komura, and Wenping Wang. 2023.
C·ASE: Learning Conditional Adversarial Skill Embeddings for Physics-based Char-
acters. In SIGGRAPH Asia 2023 Conference Papers (Sydney, NSW, Australia) (SA ’23).
Association for Computing Machinery, New York, NY, USA, Article 2, 11 pages.
https://doi.org/10.1145/3610548.3618205

Philipp Dufter, Martin Schmitt, and Hinrich Schütze. 2021. Position Information in
Transformers: An Overview. CoRR abs/2102.11090 (2021). arXiv:2102.11090 https:
//arxiv.org/abs/2102.11090

Katerina Fragkiadaki, Sergey Levine, and Jitendra Malik. 2015. Recurrent Network
Models for Kinematic Tracking. CoRR abs/1508.00271 (2015). arXiv:1508.00271
http://arxiv.org/abs/1508.00271

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. 2024. One Step Diffusion
via Shortcut Models. arXiv:2410.12557 [cs.LG] https://arxiv.org/abs/2410.12557

Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. 2022.
Generating Diverse and Natural 3D Human Motions From Text. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 5152–5161.

Rachel Heck and Michael Gleicher. 2007. Parametric Motion Graphs. In Proceedings of
the 2007 Symposium on Interactive 3D Graphics and Games (Seattle, Washington) (I3D
’07). ACM, New York, NY, USA, 129–136. https://doi.org/10.1145/1230100.1230123

Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne,
Yuval Tassa, Tom Erez, Ziyu Wang, S. M. Ali Eslami, Martin A. Riedmiller, and David
Silver. 2017. Emergence of Locomotion Behaviours in Rich Environments. CoRR
abs/1707.02286 (2017). arXiv:1707.02286 http://arxiv.org/abs/1707.02286

Eric Heitz, Laurent Belcour, and Thomas Chambon. 2023. Iterative 𝛼-(de)Blending: A
Minimalist Deterministic Diffusion Model. In Special Interest Group on Computer
Graphics and Interactive Techniques Conference Conference Proceedings. 1–8. https:
//doi.org/10.1145/3588432.3591540 arXiv:2305.03486 [cs]

Dan Hendrycks and Kevin Gimpel. 2016. Bridging Nonlinearities and Stochas-
tic Regularizers with Gaussian Error Linear Units. CoRR abs/1606.08415 (2016).
arXiv:1606.08415 http://arxiv.org/abs/1606.08415

Gustav Eje Henter, SimonAlexanderson, and Jonas Beskow. 2019. MoGlow: Probabilistic
and controllable motion synthesis using normalising flows. CoRR abs/1905.06598
(2019). arXiv:1905.06598 http://arxiv.org/abs/1905.06598

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. In Proceedings of the 34th International Conference on Neural Information
Processing Systems (Vancouver, BC, Canada) (NIPS ’20). Curran Associates Inc., Red
Hook, NY, USA, Article 574, 12 pages.

Daniel Holden. 2018. Character Control with Neural Networks and Machine Learning.
In Proc. of GDC 2018.

Daniel Holden, Oussama Kanoun, Maksym Perepichka, and Tiberiu Popa. 2020. Learned
motion matching. ACM Trans. Graph. 39, 4, Article 53 (Aug. 2020), 13 pages. https:
//doi.org/10.1145/3386569.3392440

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned Neural Networks
for Character Control. ACM Trans. Graph. 36, 4, Article 42 (July 2017), 13 pages.
https://doi.org/10.1145/3072959.3073663

Seokpyo Hong, Daseong Han, Kyungmin Cho, Joseph S. Shin, and Junyong Noh. 2019.
Physics-based full-body soccer motion control for dribbling and shooting. ACM
Trans. Graph. 38, 4, Article 74 (July 2019), 12 pages. https://doi.org/10.1145/3306346.
3322963

Kyunglyul Hyun, Kyungho Lee, and Jehee Lee. 2016. Motion Grammars for Character
Animation. Computer Graphics Forum 35 (2016). https://api.semanticscholar.org/
CorpusID:3469961

Tobias Kleanthous and Antonio Martini. 2023. Learning Robust and Scalable Motion
Matching with Lipschitz Continuity and Sparse Mixture of Experts. In Proceedings
of the 16th ACM SIGGRAPH Conference on Motion, Interaction and Games (Rennes,
France) (MIG ’23). Association for Computing Machinery, New York, NY, USA,
Article 1, 13 pages. https://doi.org/10.1145/3623264.3624442

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. 2002. Motion Graphs. In Proceedings
of the 29th Annual Conference on Computer Graphics and Interactive Techniques
(San Antonio, Texas) (SIGGRAPH ’02). ACM, New York, NY, USA, 473–482. https:
//doi.org/10.1145/566570.566605

Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and Nancy S. Pollard.
2002. Interactive control of avatars animated with human motion data. ACM Trans.
Graph. 21, 3 (July 2002), 491–500. https://doi.org/10.1145/566654.566607

Kyungho Lee, Seyoung Lee, and Jehee Lee. 2018. Interactive Character Animation by
Learning Multi-objective Control. ACM Trans. Graph. 37, 6, Article 180 (Dec. 2018),
10 pages. https://doi.org/10.1145/3272127.3275071

Sunmin Lee, Sebastian Starke, Yuting Ye, Jungdam Won, and Alexander Winkler. 2023.
QuestEnvSim: Environment-Aware Simulated Motion Tracking from Sparse Sensors.
In ACM SIGGRAPH 2023 Conference Proceedings (Los Angeles, CA, USA) (SIGGRAPH
’23). Association for Computing Machinery, New York, NY, USA, Article 62, 9 pages.
https://doi.org/10.1145/3588432.3591504

Yongjoon Lee, Kevin Wampler, Gilbert Bernstein, Jovan Popović, and Zoran Popović.
2010. Motion Fields for Interactive Character Locomotion. In ACM SIGGRAPH Asia
2010 Papers (Seoul, South Korea) (SIGGRAPH ASIA ’10). ACM, New York, NY, USA,
Article 138, 8 pages. https://doi.org/10.1145/1866158.1866160

Sergey Levine, Jack M. Wang, Alexis Haraux, Zoran Popović, and Vladlen Koltun.
2012. Continuous Character Control with Low-dimensional Embeddings. ACM
Trans. Graph. 31, 4, Article 28 (July 2012), 10 pages. https://doi.org/10.1145/2185520.
2185524

Peizhuo Li, Kfir Aberman, Zihan Zhang, Rana Hanocka, and Olga Sorkine-Hornung.
2022. GANimator: Neural Motion Synthesis from a Single Sequence. ACM Transac-
tions on Graphics (TOG) 41, 4 (2022), 138.

Peizhuo Li, Sebastian Starke, Yuting Ye, and Olga Sorkine-Hornung. 2024. WalkTheDog:
Cross-Morphology Motion Alignment via Phase Manifolds. In ACM SIGGRAPH 2024
Conference Papers (Denver, CO, USA) (SIGGRAPH ’24). Association for Computing
Machinery, New York, NY, USA, Article 70, 10 pages. https://doi.org/10.1145/
3641519.3657508

Tianyu Li, Calvin Qiao, Guanqiao Ren, KangKang Yin, and Sehoon Ha. 2023b. AAMDM:
Accelerated Auto-regressive Motion Diffusion Model. https://doi.org/10.48550/
arXiv.2401.06146 arXiv:2401.06146 [cs]

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

https://doi.org/10.1145/2897824.2925893
https://doi.org/10.1145/2897824.2925893
https://doi.org/10.1145/3592458
https://doi.org/10.1111/cgf.14632
https://doi.org/10.1111/cgf.14632
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14632
https://doi.org/10.1145/3592097
https://doi.org/10.1145/3592097
https://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
https://doi.org/10.1145/3532833.3538680
https://doi.org/10.1145/3084363.3085069
https://www.youtube.com/watch?v=z_wpgHFSWss&t=658s
https://www.youtube.com/watch?v=z_wpgHFSWss&t=658s
https://cascadeur.com/
https://arxiv.org/abs/2405.20494
https://arxiv.org/abs/2405.20494
https://doi.org/10.1145/3641519.3657440
https://doi.org/10.1145/3641519.3657440
https://doi.org/10.48550/arXiv.2212.04048
https://doi.org/10.48550/arXiv.2212.04048
https://arxiv.org/abs/2212.04048
https://doi.org/10.1145/3478513.3480512
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
https://doi.org/10.1145/3641519.3657414
https://doi.org/10.1145/3641519.3657414
https://arxiv.org/abs/2404.19759
https://doi.org/10.1145/3610548.3618205
https://arxiv.org/abs/2102.11090
https://arxiv.org/abs/2102.11090
https://arxiv.org/abs/2102.11090
https://arxiv.org/abs/1508.00271
http://arxiv.org/abs/1508.00271
https://arxiv.org/abs/2410.12557
https://arxiv.org/abs/2410.12557
https://doi.org/10.1145/1230100.1230123
https://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1707.02286
https://doi.org/10.1145/3588432.3591540
https://doi.org/10.1145/3588432.3591540
https://arxiv.org/abs/2305.03486
https://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1905.06598
http://arxiv.org/abs/1905.06598
https://doi.org/10.1145/3386569.3392440
https://doi.org/10.1145/3386569.3392440
https://doi.org/10.1145/3072959.3073663
https://doi.org/10.1145/3306346.3322963
https://doi.org/10.1145/3306346.3322963
https://api.semanticscholar.org/CorpusID:3469961
https://api.semanticscholar.org/CorpusID:3469961
https://doi.org/10.1145/3623264.3624442
https://doi.org/10.1145/566570.566605
https://doi.org/10.1145/566570.566605
https://doi.org/10.1145/566654.566607
https://doi.org/10.1145/3272127.3275071
https://doi.org/10.1145/3588432.3591504
https://doi.org/10.1145/1866158.1866160
https://doi.org/10.1145/2185520.2185524
https://doi.org/10.1145/2185520.2185524
https://doi.org/10.1145/3641519.3657508
https://doi.org/10.1145/3641519.3657508
https://doi.org/10.48550/arXiv.2401.06146
https://doi.org/10.48550/arXiv.2401.06146
https://arxiv.org/abs/2401.06146

231:16 • Gou et al.

Weiyu Li, Xuelin Chen, Peizhuo Li, Olga Sorkine-Hornung, and Baoquan Chen. 2023a.
Example-based Motion Synthesis via Generative Motion Matching. ACM Transac-
tions on Graphics (TOG) 42, 4, Article 94 (2023). https://doi.org/10.1145/3592395

Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel van de Panne. 2020. Character
Controllers Using Motion VAEs. ACM Trans. Graph. 39, 4 (2020).

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le.
2023. Flow Matching for Generative Modeling. In The Eleventh International Confer-
ence on Learning Representations. https://openreview.net/forum?id=PqvMRDCJT9t

Libin Liu and Jessica Hodgins. 2017. Learning to Schedule Control Fragments for
Physics-Based Characters Using Deep Q-Learning. ACM Trans. Graph. 36, 4, Article
42a (July 2017), 14 pages. https://doi.org/10.1145/3072959.3083723

Libin Liu and Jessica Hodgins. 2018. Learning basketball dribbling skills using trajectory
optimization and deep reinforcement learning. ACM Trans. Graph. 37, 4, Article 142
(July 2018), 14 pages. https://doi.org/10.1145/3197517.3201315

Xingchao Liu, Chengyue Gong, and Qiang Liu. 2022. Flow Straight and Fast: Learning
to Generate and Transfer Data with Rectified Flow. arXiv:2209.03003 [cs.LG]
https://arxiv.org/abs/2209.03003

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. 2015. SMPL: A Skinned Multi-Person Linear Model. ACM Trans. Graphics
(Proc. SIGGRAPH Asia) 34, 6 (Oct. 2015), 248:1–248:16.

Ying-Sheng Luo, Jonathan Hans Soeseno, Trista Pei-Chun Chen, and Wei-Chao Chen.
2020. CARL: controllable agent with reinforcement learning for quadruped lo-
comotion. ACM Trans. Graph. 39, 4, Article 38 (Aug. 2020), 10 pages. https:
//doi.org/10.1145/3386569.3392433

Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J.
Black. 2019. AMASS: Archive of Motion Capture as Surface Shapes. In International
Conference on Computer Vision. 5442–5451.

JulietaMartinez,Michael J. Black, and Javier Romero. 2017. On humanmotion prediction
using recurrent neural networks. CoRR abs/1705.02445 (2017). arXiv:1705.02445
http://arxiv.org/abs/1705.02445

Ian Mason, Sebastian Starke, and Taku Komura. 2022. Real-Time Style Modelling of
Human Locomotion via Feature-Wise Transformations and Local Motion Phases.
Proceedings of the ACM on Computer Graphics and Interactive Techniques 5, 1, Article
6 (may 2022). https://doi.org/10.1145/3522618

Josh Merel, Saran Tunyasuvunakool, Arun Ahuja, Yuval Tassa, Leonard Hasenclever,
Vu Pham, Tom Erez, Greg Wayne, and Nicolas Heess. 2020. Catch & Carry: reusable
neural controllers for vision-guided whole-body tasks. ACM Trans. Graph. 39, 4,
Article 39 (Aug. 2020), 14 pages. https://doi.org/10.1145/3386569.3392474

Jianyuan Min and Jinxiang Chai. 2012. Motion Graphs++: A Compact Generative Model
for Semantic Motion Analysis and Synthesis. ACM Trans. Graph. 31, 6, Article 153
(Nov. 2012), 12 pages. https://doi.org/10.1145/2366145.2366172

Kourosh Naderi, Joose Rajamäki, and Perttu Hämäläinen. 2017. Discovering and
synthesizing humanoid climbing movements. ACM Trans. Graph. 36, 4, Article 43
(July 2017), 11 pages. https://doi.org/10.1145/3072959.3073707

Kenzo Nonami, Ranjit Kumar Barai, Addie Irawan, and Mohd Razali Daud. 2014. Histor-
ical and Modern Perspective of Walking Robots. 19–40. https://doi.org/10.1007/978-
4-431-54349-7_2

Boris N. Oreshkin, Antonios Valkanas, Felix G. Harvey, Louis-Simon Menard, Florent
Bocquelet, and Mark J. Coates. 2024. Motion In-Betweening via Deep Δ-Interpolator
. IEEE Transactions on Visualization & Computer Graphics 30, 08 (Aug. 2024), 5693–
5704. https://doi.org/10.1109/TVCG.2023.3309107

Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and Jehee Lee. 2019. Learning
Predict-and-Simulate Policies From Unorganized Human Motion Data. ACM Trans.
Graph. 38, 6, Article 205 (2019).

Sang Il Park, Hyun Joon Shin, and Sung Yong Shin. 2002. On-line locomotion generation
based on motion blending. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (San Antonio, Texas) (SCA ’02). Association
for Computing Machinery, New York, NY, USA, 105–111. https://doi.org/10.1145/
545261.545279

Dario Pavllo, Christoph Feichtenhofer, Michael Auli, and David Grangier. 2019. Model-
ing Human Motion with Quaternion-based Neural Networks. CoRR abs/1901.07677
(2019). arXiv:1901.07677 http://arxiv.org/abs/1901.07677

Dario Pavllo, David Grangier, and Michael Auli. 2018. QuaterNet: A Quaternion-based
Recurrent Model for Human Motion. CoRR abs/1805.06485 (2018). arXiv:1805.06485
http://arxiv.org/abs/1805.06485

Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne. 2017. DeepLoco:
Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning. ACM
Trans. Graph. 36, 4, Article 41 (July 2017), 13 pages. https://doi.org/10.1145/3072959.
3073602

Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. 2021. AMP:
adversarial motion priors for stylized physics-based character control. ACM Trans.
Graph. 40, 4, Article 144 (July 2021), 20 pages. https://doi.org/10.1145/3450626.
3459670

Xue Bin Peng and Michiel van de Panne. 2017. Learning Locomotion Skills Us-
ing DeepRL: Does the Choice of Action Space Matter?. In Proceedings of the

ACM SIGGRAPH / Eurographics Symposium on Computer Animation (Los Ange-
les, California) (SCA ’17). ACM, New York, NY, USA, Article 12, 13 pages. https:
//doi.org/10.1145/3099564.3099567

Zhongfei Qing, Zhongang Cai, Zhitao Yang, and Lei Yang. 2023. Story-to-Motion:
Synthesizing Infinite and Controllable Character Animation from Long Text. In
SIGGRAPH Asia 2023 Technical Communications (Sydney, NSW, Australia) (SA ’23).
Association for Computing Machinery, New York, NY, USA, Article 28, 4 pages.
https://doi.org/10.1145/3610543.3626176

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models From
Natural Language Supervision. In Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event (Proceedings of Machine
Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 8748–8763.
http://proceedings.mlr.press/v139/radford21a.html

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2021. High-Resolution Image Synthesis with Latent Diffusion Models.
arXiv:2112.10752 [cs.CV]

Charles Rose, Michael F. Cohen, and Bobby Bodenheimer. 1998. Verbs and Adverbs:
Multidimensional Motion Interpolation. IEEE Comput. Graph. Appl. 18, 5 (Sept. 1998),
32–40. https://doi.org/10.1109/38.708559

David Wong Ryan Cardinal, Luke Shier. 2022. FIFA 22’s’ Hypermotion: Full-Match
Mocap Driving Machine Learning Technology. In Proc. of GDC 2022.

Alla Safonova and Jessica K. Hodgins. 2007. Construction and Optimal Search of
Interpolated Motion Graphs. In ACM SIGGRAPH 2007 Papers (San Diego, California)
(SIGGRAPH ’07). ACM, New York, NY, USA, Article 106. https://doi.org/10.1145/
1275808.1276510

Yi Shi, Jingbo Wang, Xuekun Jiang, Bingkun Lin, Bo Dai, and Xue Bin Peng. 2024.
Interactive Character Control with Auto-Regressive Motion Diffusion Models. ACM
Trans. Graph. 43 (jul 2024).

Hyun Joon Shin and Hyun Seok Oh. 2006. Fat Graphs: Constructing an Interac-
tive Character with Continuous Controls. In Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (Vienna, Austria) (SCA
’06). Eurographics Association, Goslar, DEU, 291–298.

Jiaming Song, Chenlin Meng, and Stefano Ermon. 2021. Denoising Diffusion Implicit
Models. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net. https://openreview.net/
forum?id=St1giarCHLP

Sebastian Starke, IanMason, and Taku Komura. 2022. DeepPhase: periodic autoencoders
for learning motion phase manifolds. ACM Trans. Graph. 41, 4, Article 136 (July
2022), 13 pages. https://doi.org/10.1145/3528223.3530178

Sebastian Starke, Paul Starke, Nicky He, Taku Komura, and Yuting Ye. 2024. Categorical
Codebook Matching for Embodied Character Controllers. ACM Trans. Graph. 43, 4,
Article 142 (July 2024), 14 pages. https://doi.org/10.1145/3658209

Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. 2019. Neural state machine
for character-scene interactions. ACM Trans. Graph. 38, 6, Article 209 (Nov. 2019),
14 pages. https://doi.org/10.1145/3355089.3356505

Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman. 2020. Local motion
phases for learning multi-contact character movements. ACM Trans. Graph. 39, 4,
Article 54 (Aug. 2020), 14 pages. https://doi.org/10.1145/3386569.3392450

Sebastian Starke, Yiwei Zhao, Fabio Zinno, and Taku Komura. 2021. Neural animation
layering for synthesizing martial arts movements. ACM Trans. Graph. 40, 4, Article
92 (July 2021), 16 pages. https://doi.org/10.1145/3450626.3459881

Haowen Sun, Ruikun Zheng, Haibin Huang, Chongyang Ma, Hui Huang, and Ruizhen
Hu. 2024. LGTM: Local-to-Global Text-Driven Human Motion Diffusion Model.
In ACM SIGGRAPH 2024 Conference Papers (Denver, CO, USA) (SIGGRAPH ’24).
Association for Computing Machinery, New York, NY, USA, Article 66, 9 pages.
https://doi.org/10.1145/3641519.3657422

Lingfeng Sun, Haichao Zhang, Wei Xu, and Masayoshi Tomizuka. 2022. PaCo:
Parameter-Compositional Multi-task Reinforcement Learning. InAdvances in Neural
Information Processing Systems, Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (Eds.). https://openreview.net/forum?id=LYXTPNWJLr

Vanessa Tan, Junghyun Nam, Juhan Nam, and Junyong Noh. 2023. Motion to Dance
Music Generation using Latent Diffusion Model. In SIGGRAPH Asia 2023 Technical
Communications (Sydney, NSW, Australia) (SA ’23). Association for Computing
Machinery, New York, NY, USA, Article 5, 4 pages. https://doi.org/10.1145/3610543.
3626164

Chen Tessler, Yunrong Guo, Ofir Nabati, Gal Chechik, and Xue Bin Peng. 2024. Masked-
Mimic: Unified Physics-Based Character Control Through Masked Motion Inpaint-
ing. ACM Transactions on Graphics (TOG) (2024).

Chen Tessler, Yoni Kasten, Yunrong Guo, Shie Mannor, Gal Chechik, and Xue Bin
Peng. 2023. CALM: Conditional Adversarial Latent Models for Directable Virtual
Characters. In ACM SIGGRAPH 2023 Conference Proceedings (Los Angeles, CA, USA)
(SIGGRAPH ’23). Association for Computing Machinery, New York, NY, USA, Article
37, 9 pages. https://doi.org/10.1145/3588432.3591541

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

https://doi.org/10.1145/3592395
https://openreview.net/forum?id=PqvMRDCJT9t
https://doi.org/10.1145/3072959.3083723
https://doi.org/10.1145/3197517.3201315
https://arxiv.org/abs/2209.03003
https://arxiv.org/abs/2209.03003
https://doi.org/10.1145/3386569.3392433
https://doi.org/10.1145/3386569.3392433
https://arxiv.org/abs/1705.02445
http://arxiv.org/abs/1705.02445
https://doi.org/10.1145/3522618
https://doi.org/10.1145/3386569.3392474
https://doi.org/10.1145/2366145.2366172
https://doi.org/10.1145/3072959.3073707
https://doi.org/10.1007/978-4-431-54349-7_2
https://doi.org/10.1007/978-4-431-54349-7_2
https://doi.org/10.1109/TVCG.2023.3309107
https://doi.org/10.1145/545261.545279
https://doi.org/10.1145/545261.545279
https://arxiv.org/abs/1901.07677
http://arxiv.org/abs/1901.07677
https://arxiv.org/abs/1805.06485
http://arxiv.org/abs/1805.06485
https://doi.org/10.1145/3072959.3073602
https://doi.org/10.1145/3072959.3073602
https://doi.org/10.1145/3450626.3459670
https://doi.org/10.1145/3450626.3459670
https://doi.org/10.1145/3099564.3099567
https://doi.org/10.1145/3099564.3099567
https://doi.org/10.1145/3610543.3626176
http://proceedings.mlr.press/v139/radford21a.html
https://arxiv.org/abs/2112.10752
https://doi.org/10.1109/38.708559
https://doi.org/10.1145/1275808.1276510
https://doi.org/10.1145/1275808.1276510
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://doi.org/10.1145/3528223.3530178
https://doi.org/10.1145/3658209
https://doi.org/10.1145/3355089.3356505
https://doi.org/10.1145/3386569.3392450
https://doi.org/10.1145/3450626.3459881
https://doi.org/10.1145/3641519.3657422
https://openreview.net/forum?id=LYXTPNWJLr
https://doi.org/10.1145/3610543.3626164
https://doi.org/10.1145/3610543.3626164
https://doi.org/10.1145/3588432.3591541

Control Operators for Interactive Character Animation • 231:17

Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel Cohen-or, and Amit Haim
Bermano. 2023. Human Motion Diffusion Model. In The Eleventh International Con-
ference on Learning Representations. https://openreview.net/forum?id=SJ1kSyO2jwu

Adrien Treuille, Yongjoon Lee, and Zoran Popović. 2007. Near-Optimal Character
Animation with Continuous Control. In ACM SIGGRAPH 2007 Papers (San Diego,
California) (SIGGRAPH ’07). Association for Computing Machinery, New York, NY,
USA, 7–es. https://doi.org/10.1145/1275808.1276386

Unreal. 2022a. Animation Blueprints. https://dev.epicgames.com/documentation/en-
us/unreal-engine/animation-blueprints-in-unreal-engine

Unreal. 2022b. Blueprints Visual Scripting. https://dev.epicgames.com/documentation/
en-us/unreal-engine/blueprints-visual-scripting-in-unreal-engine

Guillermo Valle-Pérez, Gustav Eje Henter, Jonas Beskow, Andre Holzapfel, Pierre-Yves
Oudeyer, and Simon Alexanderson. 2021. Transflower: Probabilistic Autoregressive
Dance Generation with Multimodal Attention. ACM Trans. Graph. 40, 6, Article 195
(2021), 14 pages. https://doi.org/10.1145/3478513.3480570

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In
Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Jack M. Wang, David J. Fleet, and Aaron Hertzmann. 2008. Gaussian Process Dynamical
Models for Human Motion. IEEE Trans. Pattern Anal. Mach. Intell. 30, 2 (Feb. 2008),
283–298. https://doi.org/10.1109/TPAMI.2007.1167

Zhiyong Wang, Jinxiang Chai, and Shihong Xia. 2021. Combining Recurrent Neural
Networks and Adversarial Training for Human Motion Synthesis and Control. IEEE
Transactions on Visualization and Computer Graphics 27, 1 (2021), 14–28. https:
//doi.org/10.1109/TVCG.2019.2938520

Zhaoming Xie, Patrick Clary, Jeremy Dao, Pedro Morais, Jonanthan Hurst, and Michiel
van de Panne. 2020. Learning Locomotion Skills for Cassie: Iterative Design and Sim-
to-Real. In Proceedings of the Conference on Robot Learning (Proceedings of Machine
Learning Research, Vol. 100), Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura
(Eds.). PMLR, 317–329. https://proceedings.mlr.press/v100/xie20a.html

Pei Xu, Xiumin Shang, Victor Zordan, and Ioannis Karamouzas. 2023a. Composite
Motion Learning with Task Control. ACM Trans. Graph. 42, 4, Article 93 (July 2023),
16 pages. https://doi.org/10.1145/3592447

Pei Xu, Kaixiang Xie, Sheldon Andrews, Paul G. Kry, Michael Neff, Morgan Mcguire,
Ioannis Karamouzas, and Victor Zordan. 2023b. AdaptNet: Policy Adaptation for
Physics-Based Character Control. ACM Trans. Graph. 42, 6, Article 177 (Dec. 2023),
17 pages. https://doi.org/10.1145/3618375

Heyuan Yao, Zhenhua Song, Baoquan Chen, and Libin Liu. 2022. ControlVAE: Model-
Based Learning of Generative Controllers for Physics-Based Characters. ACM Trans.
Graph. 41, 6, Article 183 (Nov. 2022), 16 pages. https://doi.org/10.1145/3550454.
3555434

Heyuan Yao, Zhenhua Song, Yuyang Zhou, Tenglong Ao, Baoquan Chen, and Libin
Liu. 2024. MoConVQ: Unified Physics-Based Motion Control via Scalable Discrete
Representations. ACM Trans. Graph. 43, 4, Article 144 (July 2024), 21 pages. https:
//doi.org/10.1145/3658137

He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive neural
networks for quadruped motion control. ACM Trans. Graph. 37, 4, Article 145 (July
2018), 11 pages. https://doi.org/10.1145/3197517.3201366

Haotian Zhang, Ye Yuan, Viktor Makoviychuk, Yunrong Guo, Sanja Fidler, Xue Bin
Peng, and Kayvon Fatahalian. 2023b. Learning Physically Simulated Tennis Skills
from Broadcast Videos. ACM Trans. Graph. 42, 4, Article 95 (jul 2023), 14 pages.
https://doi.org/10.1145/3592408

Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang,
and Ziwei Liu. 2022. MotionDiffuse: Text-Driven Human Motion Generation with
Diffusion Model. https://doi.org/10.48550/arXiv.2208.15001 arXiv:2208.15001

Zihan Zhang, Richard Liu, Kfir Aberman, and Rana Hanocka. 2023a. TEDi: Temporally-
Entangled Diffusion for Long-Term Motion Synthesis. https://doi.org/10.48550/
arXiv.2307.15042 arXiv:2307.15042 [cs]

Kaifeng Zhao, Gen Li, and Siyu Tang. 2024. DART: A Diffusion-Based Autoregressive
Motion Model for Real-Time Text-Driven Motion Control. https://doi.org/10.48550/
arXiv.2410.05260 arXiv:2410.05260 [cs]

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. 2018. On the Continuity
of Rotation Representations in Neural Networks. CoRR abs/1812.07035 (2018).
arXiv:1812.07035 http://arxiv.org/abs/1812.07035

Qingxu Zhu, He Zhang, Mengting Lan, and Lei Han. 2023b. Neural Categorical Priors
for Physics-Based Character Control. ACM Trans. Graph. 42, 6, Article 178 (Dec.
2023), 16 pages. https://doi.org/10.1145/3618397

Wentao Zhu, Xiaoxuan Ma, Dongwoo Ro, Hai Ci, Jinlu Zhang, Jiaxin Shi, Feng Gao,
Qi Tian, and Yizhou Wang. 2023a. Human motion generation: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2023).

Fabio Zinno. 2019. ML Tutorial Day: From Motion Matching to Motion Synthesis, and
All the Hurdles In Between. In Proc. of GDC 2019.

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

https://openreview.net/forum?id=SJ1kSyO2jwu
https://doi.org/10.1145/1275808.1276386
https://dev.epicgames.com/documentation/en-us/unreal-engine/animation-blueprints-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/animation-blueprints-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/blueprints-visual-scripting-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/blueprints-visual-scripting-in-unreal-engine
https://doi.org/10.1145/3478513.3480570
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1109/TPAMI.2007.1167
https://doi.org/10.1109/TVCG.2019.2938520
https://doi.org/10.1109/TVCG.2019.2938520
https://proceedings.mlr.press/v100/xie20a.html
https://doi.org/10.1145/3592447
https://doi.org/10.1145/3618375
https://doi.org/10.1145/3550454.3555434
https://doi.org/10.1145/3550454.3555434
https://doi.org/10.1145/3658137
https://doi.org/10.1145/3658137
https://doi.org/10.1145/3197517.3201366
https://doi.org/10.1145/3592408
https://doi.org/10.48550/arXiv.2208.15001
https://arxiv.org/abs/2208.15001
https://doi.org/10.48550/arXiv.2307.15042
https://doi.org/10.48550/arXiv.2307.15042
https://arxiv.org/abs/2307.15042
https://doi.org/10.48550/arXiv.2410.05260
https://doi.org/10.48550/arXiv.2410.05260
https://arxiv.org/abs/2410.05260
https://arxiv.org/abs/1812.07035
http://arxiv.org/abs/1812.07035
https://doi.org/10.1145/3618397

231:18 • Gou et al.

Fig. 15. Screenshot of user Blueprint Graphs for theMove to Target behavior. From top to bottom: specifying the Control Schema, specifying the Training
Controls, specifying the Runtime Controls. Certain inputs are removed for clarity.

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

Control Operators for Interactive Character Animation • 231:19

Fig. 16. Screenshot of a user Blueprint Graph for the Matching Function of the Move to Target behavior, as used in Learned Motion Matching. Certain inputs
are removed for clarity.

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

231:20 • Gou et al.

Fig. 17. Illustration of the Control Operators used for all the different Control Encoder Networks shown in the results.

ACM Trans. Graph., Vol. 44, No. 6, Article 231. Publication date: December 2025.

,

	Abstract
	1 Introduction
	2 Related Work
	2.1 Interactive Character Controllers
	2.2 Diffusion and Flow-Matching Models
	2.3 Control Frameworks

	3 Control Operators
	3.1 Overview
	3.2 Basic Operators
	3.3 Additional Operators
	3.4 Control Encoder Networks
	3.5 Implementation and User Workflow

	4 Controllers
	4.1 Auto-Encoder
	4.2 Latent Auto-Regressive Flow-Matching Model
	4.3 Segment-Based Learned Motion Matching

	5 Results
	5.1 Uncontrolled Generation
	5.2 Locomotion
	5.3 Interactions
	5.4 Multi-Behavior Control

	6 Evaluation
	6.1 User Study
	6.2 Control Encoder Network
	6.3 Ablations
	6.4 Performance

	7 Discussion & Limitations
	8 Conclusion
	Acknowledgments
	References

