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Figure 1: Our method simulates deformation effects, including external forces and collisions, 300× to 5000× faster than stan-
dard offline simulation.

ABSTRACT
Data-driven methods for physical simulation are an attractive op-
tion for interactive applications due to their ability to trade precom-
putation and memory footprint in exchange for improved runtime
performance. Yet, existing data-driven methods fall short of the
extreme memory and performance constraints imposed by mod-
ern interactive applications like AAA games and virtual reality.
Here, performance budgets for physics simulation range from tens
to hundreds of micro-seconds per frame, per object. We present
a data-driven physical simulation method that meets these con-
straints. Our method combines subspace simulation techniques
with machine learning which, when coupled, enables a very effi-
cient subspace-only physics simulation that supports interactions
with external objects – a longstanding challenge for existing sub-
space techniques. We also present an interpretation of our method
as a special case of subspace Verlet integration, where we apply
machine learning to efficiently approximate the physical forces of
the system directly in the subspace. We propose several practical
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solutions required to make effective use of such a model, including
a novel training methodology required for prediction stability, and
a GPU-friendly subspace decompression algorithm to accelerate
rendering.
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1 INTRODUCTION
Many visual effects in feature films rely on realistic simulations
of the interaction and motion of deformable objects. Reproducing
these convincing and costly numerical simulations in the context
of interactive graphics applications remains an open challenge.

Progress in this area has relied on both the increasing processing
power of commodity hardware, and fast and stable simulation meth-
ods such as Position Based Dynamics (PBD) [Bender et al. 2017;
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Macklin et al. 2016; Müller et al. 2007]. The performance of these
methods, while significantly faster than offline methods employed
in films, still often exceeds the extreme constraints of modern AAA
video games and virtual reality applications: here, only a fraction
of each frame’s time budget is available for simulation, most often
in the range of 10s to 100s of microseconds. For simulations with
effects like self-collision (e.g., cloth), collisions between arbitrary
geometries, or volume preserving softbody deformation, PBD meth-
ods often either require GPU acceleration or a large percentage of
the CPU’s capacity to maintain interactive performance. Given this
gap, the latest AAA games rely on simpler, coarse-scale physical
simulation with heavily simplified collisions [Vaisse 2016].

Promising avenues to improve performance in this domain in-
clude subspace simulation and data-drivenmethods. Subspacemeth-
ods aim to perform simulation in a reduced or compressed subspace
where only the relevant deformation modes are accounted for. This
can lead to massive performance gains, however no current sub-
space approaches support interaction with external objects without
resorting to costly partial deprojection into the full space. This
precludes their use under such tight compute budgets. Data-driven
methods trade runtime memory usage (and potentially costly pre-
processing, including data acquisition) for runtime performance.
Despite their promise, so far such methods have not lead to the
several orders-of-magnitude performance increases (over full simu-
lation) needed to bridge the required performance gap.

We combine subspace simulation with data-driven methods to ef-
ficiently simulate the motion and interaction of deformable objects
– as such we benefit from the strengths of both of these approaches
(while inheriting some of their weaknesses). One can therefore view
our method in two lights: either as a subspace simulation method
that efficiently resolves interactions with external objects using
a data-driven function approximator (i.e., parameterized using a
neural network), or as a data-driven method that relies on subspace
simulation to build a compressed representation of the simulation
state. For consistency, in the rest of this paper we adopt the second
of these views, and provide further discussion on this alternative
perspective in Section 8.

We present several contributions to effectively combine these
two paradigms into a practical, end-to-end solution: first, we de-
velop a novel neural network training procedure that back-propagates
errors through the entire simulation integration step, leading to
stable long term predictions; second, we devise several important
runtime algorithms and optimizations, including efficient GPU-
based decompression, an efficient method for computing vertex
normals for shading, and an approach for avoiding visual inter-
penetration artifacts. We additionally present an interpretation of
our method as a special case of subspace Verlet integration, with a
machine-learned approximation of the subspace forces, which we
believe is useful for motivating future work in this area.

2 RELATEDWORK
We discuss work in three areas most related to our approach: fast
and stable simulation methods appropriate for interactive applica-
tions, subspace techniques, and data-driven physics simulation.

Fast and Stable Simulation. One of the first fast, stable simulation
methods used in a AAA game combines a simple Verlet integration

scheme with a constraint projection step to simulate realistic char-
acter rag-dolls [Jakobsen 2001]. Position Based Dynamics [Müller
et al. 2007] methods are unconditionally stable, using a constraint
solver that limits extrapolation with an explicit/semi-implicit time
integration scheme that constrains the system to only physically-
valid states. Many frameworks tailored for industrial-caliber appli-
cations, such as Bullet, PhysX, Havok Cloth and Maya nCloth [Stam
2009], leverage the many extensions and improvements built atop
of PBD [Kim et al. 2012; Macklin and Müller 2013; Macklin et al.
2016; Müller and Chentanez 2011; Müller et al. 2014]. Interested
readers may refer to a more comprehensive review by Bender et
al. [2017].

More recently Projective Dynamics [Bouaziz et al. 2014; Liu
et al. 2013] has appeared as a competing method for fast and stable
physics simulation. In Projective Dynamics the constraint projec-
tion step is decoupled into local and global steps which are solved
separately. The local step is performed independently for each con-
straint and hence can be more easily parallelized. Due to this it has
quickly been applied to many domains such as cloth, elastic body
simulation, and fluids [Narain et al. 2016; Weiler et al. 2016]. How-
ever, in both Position Based Dynamics and Projective Dynamics the
computational cost usually scales with the number of vertices and
constraints, which can grow large for high resolution cloth. This
can make it inaccessible within the time constraints imposed by
games, in particular when these constraints become expensive to
compute such as self-collisions and collisions on arbitrary meshes.

Subspace Simulation. Subspace, or model reduction methods
project the equations of motion into a reduced subspace with the
hope of solving them more efficiently. This can work particularly
well in constrained systems, where one could expect the effective
degrees of freedom of a system to be far smaller than the dimension-
ality of the full state space. Many works explore the construction
of efficient and effective subspace bases [Harmon and Zorin 2013;
Huang et al. 2011; Sifakis and Barbic 2012; von Radziewsky et al.
2016; von Tycowicz et al. 2013; Wang et al. 2015; Yang et al. 2015,
2013], however a standard PCA basis remains an effective choice
(for a linear basis) in the presence of a representative set of defor-
mation examples [Barbič and James 2005; Treuille et al. 2006]. One
interesting extension to this is presented by Fulton et al. [2019]
who build a more compressed non-linear subspace on top of the
PCA subspace using an auto-encoder to accelerate the solution of
the implicit integration step of the simulation.

Given a basis, projecting the equations of motion is simple, but
incorporating other operations can be challenging. Previous work
has focused on applying these methods to elastic deformation and
FEM solvers [An et al. 2008; Barbič and James 2005; Kim and James
2009; Pan et al. 2015], cloth simulation [Hahn et al. 2014], articulated
characters [Galoppo et al. 2007, 2009; Kry et al. 2002; Xu and Barbič
2016], and collisions [Teng et al. 2015, 2014].

These approaches are difficult to incorporate with PBD-based
methods due to the difficulty in formulating the PBD constraint
projection as a subspace operator and so implicit Euler integration
remains a popular subspace integration scheme. However, Brandt
et al. [2018] apply subspace methods to Projective Dynamics by
leveraging a separate subspace for the constraints and sampling



Subspace Neural Physics: Fast Data-Driven Interactive Simulation SCA ’19, July 26–28, 2019, Los Angeles, CA, USA

Figure 2: Overview – we acquire training data X and Y offline using Maya’s nCloth, and perform PCA to obtain compressed
representations Z and W, before training a neural networkΦ to recurrently predict the compressed state of the object z∗, given
the previous state of object z∗t−1, and the compressed state of external objects w∗. Simulation object positions x∗ and normals
n∗ are computed directly from the models output, for rendering.

constraint projections to approximate their subspace representation
with a least squares fit.

Handling internal and external collisions efficiently is particu-
larly challenging for subspace methods due to the geometric opera-
tions involved. Teng et al. [2015; 2014] manage self-collisions by
applying forces on a sparse set of deprojected simulation points.
They support external collisions by allowing partial, albeit costly,
full-space simulation in areas of the mesh involving collisions. We
propose an alternative solution to efficiently compute the effects
of such external objects directly and entirely in the subspace (i.e.,
without any deprojection during simulation.)

Data-Driven Simulation. Data-Drivenmethods use data, typically
precomputed offline using accurate simulation techniques, to ideally
enhance, accelerate or approximate physical simulations at runtime.
This is popular in character clothing due to the cost of resolving
collisions with the cloth and character. Kim et al. [2013] precompute
and compress all possible secondary cloth motions on a character
and efficiently query this database at runtime. Xu et al. [2014] use
example cloth shapes to deform a character’s cloth based on its
pose. Wang et al. [2010] similarly layer wrinkles on top of a coarse
simulation mesh and while these methods produce high quality
results, they tend to have large memory footprints as much of the
training data must be kept resident. Luo et al. [2018] propose a
neural network specialized in modelling non-linear deformation
for full-space simulated objects while Edilson de Aguiar et al. [2010]
instead rely on PCA, as we do, to compute a cloth subspace and train
a simple linear model of the cloth dynamics within this subspace.
Although their performance and memory usage is similar to ours,
their approach does not scale to more complex deformations as
their linear model is too simple.

Data-driven methods have also been applied to fluid simula-
tion [Kim et al. 2018; Wiewel et al. 2018]. Regression forests can
predict the movement of fluid particles based on global information,
such as spatially-varying pressure [Ladicky et al. 2017; Ladický et al.
2015]. Since these models predict individual particle velocities, an
efficient GPU implementation is required to achieve the best per-
formance. Data-driven methods can also be employed selectively

to accelerate components of the physics pipeline: Thompson et
al. [2016] use a highly specialized deep neural network to solve the
incompressible Euler equations of a fluid simulation.

Alternatively, one can use data-driven methods to add fine de-
tails to coarse-scale simulations. Chu et al. [2017] parameterize a
feature descriptor using a Convolutional Neural Network (CNN)
to match simulation datasets, whereas Xie et al. [2018] use Gen-
erative Adversarial Networks for fluid flow super resolution. Jin
et al. [2018] use texture coordinates and a pixel based representa-
tion for producing the cloth’s wrinkles via a CNN. More recently,
Lahner et al. [2018] combine a coarse simulation with a Generative
Adversarial Network which adds high frequency details such as
wrinkles to cloth. Unfortunately, evaluating CNNs is expensive and
memory intensive, and so it is difficult for these techniques to reach
the multiple orders-of-magnitude gains needed for incorporation
in modern game engines (even with GPU acceleration).

The inherent challenge of data-driven methods typically lies in
striking a balance between runtime performance, memory usage,
accuracy, and model capacity/expressiveness. Ours is the first data-
driven method for deformable objects that performs well in all of
these domains.

3 OVERVIEW
Fig 2 outlines our method: we first collect high-quality simulation
data using Maya’s nCloth before computing a linear subspace using
PCA. We then devise a machine learning approach, including a
neural network model and a novel training methodology. We inte-
grate this model into an interactive runtime algorithm that includes
several optimizations, such as an efficient GPU decompression al-
gorithm and a vertex normal approximation method.

4 TRAINING DATA
Generally speaking, almost any simulation method is suitable for
acquiring the data for our method, as the only input to our training
procedure is a raw time-series of frame-by-frame vertex positions.
We detail the exact data acquisition process we use for our results.
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Table 1: Training data acquisition parameters and timings.

Scene Material #Verts #Frames FPS Time
Ball & Sheet T-Shirt 2601 1,000,000 7.6 36h
Four Pins T-Shirt 2601 1,000,000 15.5 18h
Flag T-Shirt 2601 1,000,000 10.9 25h
Skirt Denim 3000 650,000 3.1 60h
Cape T-Shirt 2601 650,000 1.9 95h
Bunny Rubber 2503 200,000 0.4 129h
Dragon Rubber 3000 500,000 1.0 138h

We perform all simulation using Maya’s nCloth, capturing data
at 60 frames per second, with between 5 and 20 substeps and 10
and 25 constraint iterations, depending on simulation stability. For
cloth-like objects we primarily use the T-Shirt material preset with
small increases in weight and stretch resistance. For deformable
objects we use the solid rubber material preset with reduced friction
to allow objects to slide easily over the surface. We perform external
collisions against the triangles of the external geometry, while self-
collisions use vertex-on-vertex collisions for cloth, and triangle-on-
triangle collisions for deformable objects. In both cases we use a
fairly large collision thickness of ∼ 5 cm to ensure stability and
prevent the cloth snagging and breaking during simulation. This
additionally allows for some leniency during prediction without
immediate visual intersection artifacts appearing (see Section 6.4).

For simple interaction objects (e.g., pins, spheres) we gener-
ate their movement in the training data randomly by keyframing
random positions at random times to produce different kinds of
interaction. For cloth-character interactions we use a large motion
capture database of ∼ 6.5× 105 animation frames, stitched together
to form one large animation. We then simulate the entire series.
After simulation we check the data and exclude any frames where
unstable or bad behavior was seen. For the skirt scene we remove
the character’s arms because they intersect frequently with the leg
mesh geometry, causing the cloth to break.

Generally, we attempt to acquire between 105 and 106 frames
of training data. We found in most cases ∼ 105 was sufficient for
testing, while the best results were achieved with closer to ∼ 106
frames. For further details on the data acquisition please see Table 1.

5 TRAINING
We discuss how we train our model, including its parameterization,
the network architecture, and our training methodology.

5.1 Parameterization
Given the simulation data gathered in the previous section, we
construct our training set by first flattening the vertex positions
at each frame t into a single, large vector xt ∈ R3c , where c is
the number of vertices. We then concatenate these vectors into
a single large matrix X = [x0, x1, ..., xn−1] ∈ R3c×n . This matrix
represents the states of the simulated object, after which we must
build a representation of the states of the external objects at each
frame. For simple objects, such as balls, we can use their 3D position;
while, for complex objects like full characters, we use the positions
of every joint relative to a reference fame (in the case of the skirt
we use the hip joint as the reference frame, and in the case of

Figure 3: Basis size impact on complex geometry and dy-
namics. There is a subtle loss of finer wrinkles as we reduce
the size of the basis. The skirt is themost challenging to com-
press, suffering from more substantial degradation.

cape we use the neck joint as the reference frame) flattened into a
large vector, ignoring the joint rotations. For objects with a moving
reference frame, we also include the position of the ground relative
to this frame so our system knows the gravity direction and floor
location as well as the velocity, acceleration, rotational velocity,
and rotational acceleration of this frame. For the flag, we include
wind speed and direction. After building this parameterization, we
have a single large vector representing the state of the external
objects for each frame yt ∈ Re , where e is the number of degrees
of freedom of the external objects, which we also concatenate into
a single large matrix Y = [y0, y1, ..., yn−1] ∈ Re×n .

We now apply PCA to both X and Y and use the computed
transformation matrices to construct subspace representations Z =
U(X − xµ ), W = V(Y − yµ ), where U ∈ Ru×3c , V ∈ Rv×e , u
is the number of subspace bases (in our results we use 64, 128
and 256), v is the number of bases used to compress the external
object representation. Here, xµ is the mean value of all x’s, and
yµ is the mean value of all y’s. As we require no compression of
the parameterization for the external objects in our examples, we
typically set v = e . If the memory usage is too large to perform
PCA we subsample the data before applying it.

PCA compression inevitably causes a loss in detail, particularly
for objects with many potential states, such as fine folds; however,
we found that 256 bases generally preserved the majority of details.
For a visual comparison, see Fig 3.

5.2 Initial Model
Given subspace data Z and W, our goal is to devise a model capable
of predicting zt from zt−1, zt−2 and wt . Since simulated objects
generally express inertia, with a tendency toward some average
rest state (represented by zero after PCA), a good initial model for
zt (denoted here as z̄t ) is:

z̄t = α ⊙ zt−1 + β ⊙ (zt−1 − zt−2), (1)

where α and β are parameters of the model and ⊙ is component-
wise multiplication. We obtain the values of these parameters by
solving a linear least squares equation individually for each dimen-
sion of α and β , denoted bym:[

αm βm
]
=

[
zt,m

] [zt−1,m
zt−1,m − zt−2,m

]†
, (2)

with t ∈ [2,n) and where † denotes the matrix pseudo-inverse.



Subspace Neural Physics: Fast Data-Driven Interactive Simulation SCA ’19, July 26–28, 2019, Los Angeles, CA, USA

Figure 4: Visual illustration of our training method – stan-
dard procedures target the most accurate result on a per-
frame basis (left). These predictions are unstable due to
high velocities produced by aggressive over-correction. Our
method targets an accurate prediction across an window of
frames (right), resulting in less aggressive and more stable
corrections.

5.3 Extended Model
Since z̄t is only a very rough approximation of zt , and does not
take into account the effects of external objects w, we know it will
not be capable to accurately model our training data. We therefore
train a neural network Φ to approximate the residual effects of the
model, such that:

zt = z̄t + Φ
( [

z̄t zt−1 wt
]T) (3)

Here, we parameterizeΦ by a standard feed-forward neural network
with 10 layers, each layer (except the output layer) using the ReLU
activation [Nair and Hinton 2010]. Excluding the input and output
layers we set the number of hidden units at each layer to 1.5× the
PCA basis size, which we found struck a good trade-off between
capacity and performance.

5.4 Network Training
The standard way of training Φ would be to iterate over the dataset
in mini-batches and to train the network to predict the value zt − z̄t
for all t . While this approach will produce a low training error, the
auto-recurrent nature of Φ, and the coupled velocity step of Equa-
tion (1) results in unstable behaviour when predictions are fed back
into the network at the next time step. Due to this, previous work
has proposed to feed back the prediction into the neural network at
the next time-step for correction [Dollár et al. 2010; Kanazawa et al.
2017; Oberweger et al. 2016]. Inspired by this, we present a training
algorithm which predicts motion over a window of frames, and
back-propagates errors through the complete integration procedure
described by Equation (3) to ensure stable long term prediction. For
a detailed algorithmic explanation please see Algorithm 1.

At a high level our training procedure is as follows: given a small
window of values for z and w from the training set, we take the
first two frames z0, z1 and add some small noise r0, r1 to perturb
them slightly off the training trajectory. From these initial states,
we repeatedly use Equation (1) and Equation (3), to predict the
following frames, feeding back in previous predictions at each new
time step. Once the full trajectory is predicted, we compute the
average positional error and velocity error across the window of

Algorithm 1: Our training algorithm for Φ. Given a short win-
dow of s frames, we predict the subspace state of the physical
object, and use the error to update the network parameters θ .
While we present this procedure for a single training sample
here, we apply it to each element in the mini-batch individually
and average the result when updating θ .
Function Train(z, w, s, θ):

/* Sample two noise vectors r0, r1 */
r0, r1 ∼ N(0, rσ )
/* Add noise to initial states z0, z1 */

z∗0, z∗1 ← z0 + r0, z1 + r1
/* Predict values of z∗ over a short window s */

for i ← 2 to s do
/* Predict z̄∗i using α and β */

z̄∗i ← α ⊙ z∗i−1 + β ⊙ (z
∗
i−1 − z∗i−2)

/* Predict z∗i using Φ */

z∗i ← z̄∗i + Φ
( [

z̄∗i z∗i−1 wi
]T ;θ )

end
/* Compute Loss L using Mean Absolute Error */

Lpos ←


 z∗2→s − z2→s




1

Lvel ←




 z∗2→s−z∗1→(s−1)

dt −
z2→s−z1→(s−1)

dt






1

L ← Lpos + Lvel
/* Update network parameters θ */

θ ← AmsGrad(θ ,∇L)
end

motion. We pass this error to the AmsGrad optimizer [Reddi et al.
2018], using automatic derivatives computed from TensorFlow.

To motivate this training procedure, consider the case where the
network predicts a large change in position from one time step to
the next. This difference will be used in the next time step by Equa-
tion (1) to produce a large initial guess which, itself, may require
aggressive correction from the network back toward the training
data. As this is repeated, the correction sizes increase and the pre-
diction becomes unstable. If we, however, train over a window of
frames, the network will only produce corrections that improve the
result over the entire window, encouraging smaller, more stable
corrections. Another way to view our training procedure is as a
variant of Back-Propagation Through Time [Rumelhart et al. 1986],
where errors are not only back-propagated through the network
but also through the integration step of Equation (1). Fig 4 provides
visual intuition.

We repeat this training procedure on mini-batches of size 16,
using overlappingwindows of size 32, for around 100 epochs or until
training converges. We use a learning rate of 0.0001, and a learning
rate decay ratio of 0.999. We use a noise standard deviation rσ of
0.01, which we found by visualizing the result of this perturbation
in the first 3 components of the PCA space. Training takes between
10 and 48 hours depending on the complexity of the setup and the
number of PCA bases used. We include more discussions on the
importance of this training method in Section 7.2.
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Figure 5: Comparison of our normal computation method
against the ground truth. In most cases our result produces
extremely small differences.

6 RUNTIME IMPLEMENTATION
We detail the runtime implementation of our method in an interac-
tive environment, including the evaluation of the neural network,
how we compute the normals of the object surfaces for rendering,
and the technique we use to prevent visible intersections.

6.1 Interactive Application
We render the results of our method in a simple interactive 3D
application written in C++ and DirectX. We re-implement the pre-
processing and neural network operations in single-threaded C++
code and load the binary network weights obtained during our
training procedure. We perform some simple optimisations to the
network evaluation, including the re-use of memory buffers and
sparse vector-matrix products that are possible due to the zero-
valued hidden units produced as a consequence of ReLU activations.

For the cape and skirt results, we implement a basic character
controller using Motion Matching [Clavet 2016] and allow the user
to dynamically control the character with a gamepad. The data we
use in the motion matching includes motion clips that were present
in the training data. Most other user interaction is simply enabled
by allowing the user to manipulate the interaction object(s) with a
mouse, or sliders on the user interface.

6.2 GPU Decompression
Since Equation (3) expects the compressed state z as input, the only
place the full object state x is required is for rendering. We can
therefore send the compressed cloth state z to the GPU, and perform
decompression only at render time. To do so, we use a simple GPU
compute shader which, for each object vertex, computes the dot
product of z and the three rows of matrix UT, corresponding to
the x , y and z components of that vertex’s position, before finally
adding the mean value xµ . This approach has two advantages over
a naïve CPU decompression method: first, GPU parallelism greatly
accelerates the computation of x, which we found could take up to
1 ms on the CPU; second, it reduces the GPU-CPU memory transfer
by an order-of-magnitude, which is important on platforms where
transferring the entire object state becomes prohibitively slow.

Figure 6: We fit capsules to each joint of the character and
use them as collision geometry to adjust for visible intersec-
tions in the final render. A typically example of this fix is
shown above.

6.3 Vertex Normal Prediction
At render time it is not sufficient to only have access to vertex posi-
tions, as the deformed vertex normals are also needed for rendering.
Previous subspace simulation methods either omit this computa-
tion or perform a naïve re-calculation of per-face normals (each
frame) followed by a distribution to neighboring vertices. This can
be inefficient: we found that a basic CPU implementation requires ∼
150 µs (in addition to the CPU decompression and memory transfer
costs). While it is possible to perform this computation on the GPU,
it can be difficult to implement efficiently as it requires performing
parallel random access writes.

Instead, similar to the method presented in James et al. [2002],
we propose learning a linear regression from the subspace state to
the full state’s normal vectors, and we perform this regression on
the GPU compute shader alongside the vertex position computation.
Given the vertex normals at each frame, flattened into one large
vector and concatenated together N = [n0,n1, ...,nn ] ∈ R3c×n ,
we can find the matrix Q that best maps from the subspace rep-
resentation Z to the vertex normals using the following equation:
Q = (N − nµ )Z†, where nµ is the mean of n for all t . Once com-
puted, QT can be used in the same way as UT to predict the vertex
normals of each vertex, by taking the dot product of the subspace
state with the three columns of QT that correspond to the vertex
normal, adding the mean nµ and re-normalizing.

Since the subspace representation was not constructed with
normal prediction in mind, there is no guarantee that this method
of normal prediction will be accurate, however we found in practice
it yielded accurate enough results. For a visual comparison, please
see Fig 5.

One limitation to our method is that the computational cost
of this technique grows with the number of bases we use, and so
we expect that a GPU-accelerated implementation of the standard
per-face distribution method could be more efficient when large
enough basis terms are employed.

6.4 Avoiding Visible Intersections
Our method learns to efficiently perform collisions, however, due to
errors induced by the subspace compression and inaccuracies in the
prediction result, visible intersection artifacts between the external
objects and the simulation objects may still occur. Moreover, since
we defer the computation of the full state x until just prior to render-
ing, we leave no opportunity to efficiently address these artifiacts
(e.g., geometrically, on the CPU). In the spirit of maintaining high
performance, we must resolve these intersections at render time.
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Previous work, such as Edilson de Aguiar et al. [2010], solve this
problem using a depth bias when writing fragments, even when
they intersect with geometry of labelled character components.
While this would work in our case, we propose an alternative, sim-
ple and efficient solution that instead projects intersecting vertices
onto the surface of simple proxy collision objects representing the
character. This projection is simple to evaluate on the GPU with
our existing compute shader that decompresses the cloth state and
computes shading normals.

First, we build a proxy collision object for the articulated char-
acter by fitting capsules (with varying start and end radii) to all
the vertices associated to each character joint (see Fig 6). Once
fit, we pass the capsule start/end positions and radii to the GPU
decompression compute shader. Here, we additionally test the (de-
compresed) vertex positions for intersection against every relevant
capsule and, if an intersection is found, we project the vertex back
onto the capsule surface. We only adjust the position of the vertex,
leaving the computed normal unmodified to not affect the shading.

Providing vertex displacement errors generated during simu-
lation are not significant enough to result in projection onto the
“backside” of a capsule, our capsule projection pass removes small
visible intersections from our final results. For a visual example
please see Fig 6.

7 RESULTS AND EVALUATION
We test our method on a variety of scenes with different defor-
mations and interactions with external forces and objects some of
which are shown in Fig 1. For visualizations of all scenes tested
please see supplementary video. The scenes in which we apply our
method include a hanging sheet interacting with a user-controllable
ball, a user manipulating the pinned corners of a deformable sheet,
a flag on a pole where the user can move the pole or adjust the

Figure 7: Generalization: our method versus ground truth
from a test set.

Figure 8: Applying [Brandt et al. 2018] to a selection of our
test scenes. Although it produces compelling elastic defor-
mation, this method struggles to produce accurate deforma-
tions resulting from collisions.

wind speed and direction, a cape and a skirt attached to an animat-
ing character controlled dynamically by the user, demonstrating
generalization as well as self and character-collisions, a deformable
bunny with a user-controlled ball that can squash and push the
object, and a deformable dragon perturbed by a moving teapot. In
all examples we produce natural deformation behavior. In Fig 11
we stress tests our method on scenes with hundreds of bunnies
(left) and 16 characters (right), each simulated independently at
framerates of 120 FPS and 240 FPS.

7.1 Evaluation
We evaluate the accuracy and performance of our method, includ-
ing comparisons to ground truth data (from a held-out test set), the
state-of-the-art in subspace methods [Brandt et al. 2018], and some
alternative machine learning models we implement as baselines
(including common recurrent models such as LSTM and GRU net-
works). We also present the impact of PCA basis size on our results.
Please refer to the supplemental video for full visual comparisons.

Comparisons. Fig 7 compares our method to ground truth from
a held-out test set. Although we lose some detail by subspace com-
pression and network approximation, our method generalizes well
and produces realistic results visually similar to ground truth.

Fig 9 illustrates how our method performs when we adjust the
number of PCA bases. Users can easily trade quality for perfor-
mance by adjusting the number of bases and network size. See
Table 2 for more detailed performance metrics.

Fig 8 applies the method of Brandt et al. [2018] to some of our
scenes: while producing natural deformation, it struggles to accu-
rately capture deformations resulting from collisions, particularly
when such deformations are not present in the subspace basis.

In Fig 10 we visualize our method’s prediction in the subspace
of the first three PCA bases. We see that, even when our method is
not entirely accurate, it still often produces motions with similar
shape and timing profiles to that of the ground truth.

Performance. One of the key strengths of our method is its per-
formance - both in runtime speed and memory usage. In Table 2
we compare our method numerically against other methods and
ground truth data taken from a test set. Our method achieves speed-
ups ranging from ∼ 300× to ∼ 5000× over the raw simulation used
to gather the training data. It also has good performance when
compared to other state-of-the-art methods such as HRPD [Brandt
et al. 2018]. Compared neural network structures are designed to
be as similar as possible in size and memory use. All performance
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Figure 9: Our method when using different sizes of PCA ba-
sis.

measurements are made on an Intel Xeon E5-1650 3.5 GHz CPU
single threaded, and a GeForce GTX 1080 Titan GPU.

7.2 Ablation Study
In this section we perform an ablation study to observe the effects
of removing various components of our system. We test these abla-
tions across several models including Linear Regression [de Aguiar
et al. 2010]), Radial Basis Functions (RBF), Feed-forward Neural
Networks (Our Method), and recurrent models (RNN, GRU, and
LSTM Networks).

State Difference Prediction. We propose to train a model which
in essence predicts the delta between two time steps. If instead we
predict the absolute value of the next time step we observe stable
prediction behaviour across all models (with the exception of Linear
Regression), however, the predictions are very inaccurate, and the
observed movement is stiff with many inter-penetrations visible.
We found this issue to be particularly bad for RBFs, which also
suffer from poor runtime performance and memory usage when
using large amounts of training data.

Training Procedure. If we predict the delta between time steps we
find the system is more accurate and less stiff, however, without our
training procedure (instead using the mean squared error computed
at each frame independently) we find all models to be extremely
unstable during runtime prediction (see Fig 12).

Initial State Noise. We add some noise to the initial states dur-
ing our training procedure. We observe that this encourages our
network to learn to correct small errors, driving the prediction
towards the training data when it diverges – increasing stability.
Although we found dropout [Gal and Ghahramani 2016; Srivastava
et al. 2014] also able to produce a similar regularizing effect, we

found our solution was more effective in improving the stability of
predictions.

Initial Model. In Section 5.2 we present a simple linear model
used as an initial prediction of the next time step.We found omitting
this model gave less accurate results and less stability. One reason
for this increased stability is that theα and β parameters essentially
provide a way of damping the velocity and pulling the system
toward the rest state when it is far from the training data.

Recurrent Model. When using recurrent models such as RNNs,
GRUs, and LSTMs trained with our loss function we observed no
large differences in quality to our proposed Feed-forward Neural
Network structure – however for these models the training time is
often long, and the hidden state initialization needs to be handled
carefully. Given that physical systems can be fully described by their
position and velocity (for plastic materials, the rest state and rest
state velocity are also required), we also expect that the “memory”
provided by recurrent models is not required for our problem. We
therefore opt for the simpler Feed-forward model in our proposed
method.

8 SUBSPACE VERLET INTEGRATION
One way to interpret our method is as a special case of elastic
subspace Verlet integration where an efficient approximation of the
non-linear subspace forces is used. To derive this interpretation we
start with a standard Verlet forward integration method described
as follows:

xt = xt−1 + (xt−1 − xt−2) + dt2M−1 ft−1, (4)

where M−1 is the inverse mass matrix, f are the forces, and
dt is the time-step. Depending on the model used, typically the
forces f are split into separate terms such as internal forces fint (x),
external forces fext (x, y), constant forces such as gravity fдrav , and
other forces such as Coriolis forces for objects in moving reference
frames. If we assume an extremely simple linear elastic system
centered around the rest state represented by the zero vector (this
can be constructed by subtracting the actual rest state from all other
states), we can introduce constant stiffness and damping matrices K
and V and split the force term into linear elastic forces and other
non-linear forces f̃ as follows:

ft = −Kxt − V
xt − xt−1

dt
+ f̃t (5)

which can then be inserted into Equation (4) and factorized to
obtain

xt = (I − dt2M−1K)xt−1 + (I − dtM−1V)(xt−1 − xt−2) + dt2M−1 f̃t−1,
(6)

which can be simplified by letting A = I − dt2M−1K, B = I −
dtM−1V, and C = dt2M−1:

xt = Axt−1 + B(xt−1 − xt−2) + C f̃t−1. (7)
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Figure 10: Visualizing our method’s first three PCA bases predictions (black) versus ground truth (red), on an unseen test set.
Left to right: Bunny, Ball & Sheet, Four Pins, Flag, Skirt and Cape.

Figure 11: Left: simulation of 256 deformable bunnies using
64 bases at ∼120 FPS. Right: simulation of 16 dancers using
256 bases at ∼240 FPS.

Given a orthogonal subspace matrix U such as that constructed
by PCA, we can produce a subspace version of this equation by
multiplying all terms by U,

Uxt = UAxt−1 + UB(xt−1 − xt−2) + UC f̃t−1, (8)

and by letting z = Ux , Â = UAUT, B̂ = UBUT, and Ĉ = UC we get
the following:

zt = Âzt−1 + B̂(zt−1 − zt−2) + Ĉ f̃t−1. (9)

The result is an equationwhere the first two terms aremuch cheaper
to compute than before as the dimension of z is far smaller than
that of x, but with a force calculation term f̃t−1 which is potentially
still expensive as it is a function of x and y. Previous work has
therefore often been focused on finding methods for computing
subspace forces in a more efficient way, and many solutions have
been found for particular force terms such as internal forces [Barbič
and James 2005], Coriolis forces [Kim and James 2011], and external
and internal forces resulting from collisions [Teng et al. 2015, 2014].

We can observe that because each basis in U is constructed to
be statistically independent we expect Â and B̂ in this case to be
close to diagonal matrices (see Appendix A). Then, if we discard
the non-diagonal entries the multiplication can be written as a
component-wise vector multiplication with diagonal entries given
as α and β :

zt = α ⊙ zt−1 + β ⊙ (zt−1 − zt−2) + Ĉ f̃t−1, (10)

and finally by replacing Ĉ f̃t−1 with Φ we can recover Equation (3):

zt = α ⊙ zt−1 + β ⊙ (zt−1 − zt−2) + Φ
( [

z̄t zt−1 wt
]T)
. (11)

Following this derivation we see that our method reduces to a
special case of linear elastic subspace Verlet integration, where α
and β are found from data, and a neural network Φ approximates
all the other forces directly in the subspace. And, since our network
Φ takes z̄ as input rather than x̄, it can do so efficiently and with
a cost proportional to the basis size (rather than the number of
vertices).

Figure 12: Without our training method the prediction is
unstable.

Figure 13: Figure showing the extrapolation behaviour of
the Four Pins scene. Bad extrapolation can be prevented by
simply clipping the inputs and outputs of the systemwithin
the range given in the training data.

This interpretation is important because, although it assumes
an over-simplified inaccurate physical model, it opens up potential
for future hybrid data-driven subspace methods using different
integration schemes and/or more complex and accurate physical
models which can potentially target more specific components of
the simulation such as the expensive to calculate forces resulting
from external collisions.

8.1 Limitations & Future Work
Like all data-driven methods our technique has a number of limita-
tions. As expected, there is no guarantee that it will generalize well
beyond the training distribution. However, we found that clipping
the inputs and outputs of the system to the minimum and maxi-
mum found in the training data proved effective to combat this. See
Fig 13 and supplementary video for visual examples. Similarly, all
external object must be parameterized which in some cases can be
difficult for example with varying numbers of external objects.
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Table 2: Performance &Memory Comparison – we compare
to Hyper-Reduced Projective Dynamics (HRPD) [Brandt
et al. 2018], LSTMs [Hochreiter and Schmidhuber 1997] and
GRUs [Cho et al. 2014]. We demonstrate performance gains
of ∼ 5× compared to HRPD and between ∼ 300× to ∼ 5000×
compared to ground truth. Our architectural choice fairs
well compared to the alternative LSTM and GRU baselines
we explored.

Scene Method Time (µs) Memory (MB)
CPU GPU CPU GPU

Bunny

Reference 2.5 × 106 — — —
HRPD 2834 — 26.0 —

LSTM 256 448 128 5.4 7.5
GRU 256 389 128 5.9 7.5
Ours 256 360 128 5.7 7.5

Ours 128 / 64 113 / 34 68 / 30 1.4 / 0.3 3.7 / 1.8

Ball &
Sheet

Reference 1.32 × 105 — — —
HRPD 2623 — 20.8 —

LSTM 256 447 157 5.4 7.8
GRU 256 377 157 5.9 7.8
Ours 256 446 157 5.7 7.8

Ours 128 / 64 103 / 38 77 / 42 1.4 / 0.3 3.9 / 1.9

Four
Pins

Reference 6.45 × 104 — — —
HRPD 2711 — 20.8 —

LSTM 256 433 157 5.4 7.8
GRU 256 403 157 5.9 7.8
Ours 256 447 157 5.7 7.8

Ours 128 / 64 121 / 38 77 / 42 1.4 / 0.3 3.9 / 1.9

Flag

Reference 9.17 × 104 — — —
LSTM 256 434 157 5.4 7.8
GRU 256 384 157 5.9 7.8
Ours 256 344 157 5.7 7.8

Ours 128 / 64 103 / 39 77 / 42 1.4 / 0.3 3.9 / 1.9

Skirt

Reference 3.22 × 105 — — —
LSTM 256 447 183 5.4 9.0
GRU 256 425 183 5.9 9.0
Ours 256 342 183 5.7 9.0

Ours 128 / 64 115 / 38 79 / 60 1.4 / 0.3 4.5 / 2.2

Cape

Reference 5.26 × 105 — — —
LSTM 256 491 157 5.5 7.8
GRU 256 393 157 6.0 7.8
Ours 256 259 157 5.9 7.8

Ours 128 / 64 124 / 41 77 / 42 1.5 / 0.3 3.9 / 1.9

Dragon

Reference 1.0 × 106 — — —
LSTM 256 459 164 5.7 9.0
GRU 256 363 164 5.7 9.0
Ours 256 287 164 5.7 9.0

Ours 128 / 64 84 / 37 82 / 37 1.4 / 0.3 4.5 / 2.2

Like all subspace methods we are limited by the expressiveness
of the basis, and if additional fine details cannot be captured accu-
rately with the addition of more modes, the computational cost can
increase quickly.

Our method requires a time consuming training data acquisition,
with up to several days of simulation time needed. As with any

data-driven approach, this process requires proper management,
e.g., removing any erroneous simulation data from the training
set. We did not take any special measures here, and we expect this
capture and preprocessing can be accelerated by simply running
multiple simulations in parallel. Converged training time for our
method is long and, although initial results for testing can be ready
in an hour or two, our final models took roughly a day to train.

On its own, our method cannot guarantee that no intersections
will occur with external geometry without relying on a separate
solution like the capsule projection method (Section 6.4). Similarly,
we cannot provide hard guarantees that self-collisionswill not occur,
however it seems challenging to provide such guarantees while
also maintaining a simulation that runs entirely in the subspace
(and with decompression only deferred until render time).

Currently we only show our results on elastic objects but we
believe our method can be extended to plastic objects. One option is
to explicitly track the rest state, predicting the change in rest state
with the neural network. In plastic setups, care would likely need
to be taken in how training data is acquired, as objects cannot be
expected to return to their rest state when there are no interactions.
An approach using adaptive bases may be required to combat the
increased number of potential states [Hahn et al. 2014; Kim and
James 2009].

Finally, our examples only show interactions where the external
object is fixed in place, and only show simulated objects where the
reference frame for the object is controlled externally. We believe
it would be straightforward to extend this to having the neural
network predict the forces applied to the reference frame of external
objects, to allow them tomove freely. This would allow for unpinned
interactions, such as throwing boxes at a deformable object and
having it react by rolling around on the floor. Here, we expect
similar care would need to be taken in setting up the training data
simulation and collection process.

9 CONCLUSION
We presented a data-driven method for subspace physical simu-
lation of deformation, including self-collisions, and interactions
with external objects and forces, combining subspace simulation
with machine learning. Our method generates high-quality results
several orders-of-magnitude faster than the reference simulation,
significantly outperforming the state-of-the-art. The applicability
to a broad set of deformation behaviors, its performance and its
modest memory footprint make our method practical for use in
modern AAA game and virtual reality engines.

A DIAGONALITY OF Â AND B̂
If we construct our subspace projection matrix U using PCA we expect each
basis to be orthogonal and statistically independent. Given this, we should
also expect each dimension of z to change largely independently. As such,
we would expect that in a relation such as zt = Âzt−1 + B̂(zt−1 − zt−2),
we would find the matrices Â and B̂ to be largely diagonal as non-diagonal
entries would imply statistical coupling between the dimensions of z. To
test this hypothesis we compute matrices Â and B̂ using linear least squares
fitting of the above equation on our training data Z. As expected, we find
that Â and B̂ are primarily diagonal matrices, as visualized in Fig 14.
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Figure 14: Visualisation of matrices Â and B̂ using the 64
bases of the cloth from the Cape scene. Typical values of the
diagonal of Â range from 0.995 to 1.0while typical values on
the diagonal of B̂ range from 0.75 to 1.0.
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