
Subspace Neural Physics: Fast Data-Driven Interactive
Simulation

Daniel Holden
Ubisoft La Forge, Ubisoft
Montreal, QC, Canada

daniel.holden@ubisoft.com

Bang Chi Duong
Ubisoft La Forge, Ubisoft
Montreal, QC, Canada

bangchi.duong.20193@outlook.com

Sayantan Datta
McGill University

Montreal, QC, Canada
sayantan.datta@mail.mcgill.ca

Derek Nowrouzezahrai
McGill University

Montreal, QC, Canada
derek@cim.mcgill.ca

Figure 1: Our method simulates deformation effects, including external forces and collisions, 300× to 5000× faster than stan-
dard offline simulation.

ABSTRACT
Data-driven methods for physical simulation are an attractive op-
tion for interactive applications due to their ability to trade precom-
putation and memory footprint in exchange for improved runtime
performance. Yet, existing data-driven methods fall short of the
extreme memory and performance constraints imposed by mod-
ern interactive applications like AAA games and virtual reality.
Here, performance budgets for physics simulation range from tens
to hundreds of micro-seconds per frame, per object. We present
a data-driven physical simulation method that meets these con-
straints. Our method combines subspace simulation techniques
with machine learning which, when coupled, enables a very effi-
cient subspace-only physics simulation that supports interactions
with external objects – a longstanding challenge for existing sub-
space techniques. We also present an interpretation of our method
as a special case of subspace Verlet integration, where we apply
machine learning to efficiently approximate the physical forces of
the system directly in the subspace. We propose several practical

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SCA ’19, July 26–28, 2019, Los Angeles, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6677-9/19/07. . . $15.00
https://doi.org/10.1145/3309486.3340245

solutions required to make effective use of such a model, including
a novel training methodology required for prediction stability, and
a GPU-friendly subspace decompression algorithm to accelerate
rendering.

CCS CONCEPTS
• Computing methodologies → Neural networks; Physical
simulation; Collision detection.

KEYWORDS
cloth simulation, collision detection, neural networks, machine
learning, model reduction, data-driven simulation

ACM Reference Format:
Daniel Holden, BangChi Duong, SayantanDatta, andDerekNowrouzezahrai.
2019. Subspace Neural Physics: Fast Data-Driven Interactive Simulation.
In SCA ’19:The ACM SIGGRAPH / Eurographics Symposium on Computer
Animation (SCA ’19), July 26–28, 2019, Los Angeles, CA, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3309486.3340245

1 INTRODUCTION
Many visual effects in feature films rely on realistic simulations
of the interaction and motion of deformable objects. Reproducing
these convincing and costly numerical simulations in the context
of interactive graphics applications remains an open challenge.

Progress in this area has relied on both the increasing processing
power of commodity hardware, and fast and stable simulation meth-
ods such as Position Based Dynamics (PBD) [Bender et al. 2017;

https://doi.org/10.1145/3309486.3340245
https://doi.org/10.1145/3309486.3340245

SCA ’19, July 26–28, 2019, Los Angeles, CA, USA Holden, D. et al

Macklin et al. 2016; Müller et al. 2007]. The performance of these
methods, while significantly faster than offline methods employed
in films, still often exceeds the extreme constraints of modern AAA
video games and virtual reality applications: here, only a fraction
of each frame’s time budget is available for simulation, most often
in the range of 10s to 100s of microseconds. For simulations with
effects like self-collision (e.g., cloth), collisions between arbitrary
geometries, or volume preserving softbody deformation, PBD meth-
ods often either require GPU acceleration or a large percentage of
the CPU’s capacity to maintain interactive performance. Given this
gap, the latest AAA games rely on simpler, coarse-scale physical
simulation with heavily simplified collisions [Vaisse 2016].

Promising avenues to improve performance in this domain in-
clude subspace simulation and data-drivenmethods. Subspacemeth-
ods aim to perform simulation in a reduced or compressed subspace
where only the relevant deformation modes are accounted for. This
can lead to massive performance gains, however no current sub-
space approaches support interaction with external objects without
resorting to costly partial deprojection into the full space. This
precludes their use under such tight compute budgets. Data-driven
methods trade runtime memory usage (and potentially costly pre-
processing, including data acquisition) for runtime performance.
Despite their promise, so far such methods have not lead to the
several orders-of-magnitude performance increases (over full simu-
lation) needed to bridge the required performance gap.

We combine subspace simulation with data-driven methods to ef-
ficiently simulate the motion and interaction of deformable objects
– as such we benefit from the strengths of both of these approaches
(while inheriting some of their weaknesses). One can therefore view
our method in two lights: either as a subspace simulation method
that efficiently resolves interactions with external objects using
a data-driven function approximator (i.e., parameterized using a
neural network), or as a data-driven method that relies on subspace
simulation to build a compressed representation of the simulation
state. For consistency, in the rest of this paper we adopt the second
of these views, and provide further discussion on this alternative
perspective in Section 8.

We present several contributions to effectively combine these
two paradigms into a practical, end-to-end solution: first, we de-
velop a novel neural network training procedure that back-propagates
errors through the entire simulation integration step, leading to
stable long term predictions; second, we devise several important
runtime algorithms and optimizations, including efficient GPU-
based decompression, an efficient method for computing vertex
normals for shading, and an approach for avoiding visual inter-
penetration artifacts. We additionally present an interpretation of
our method as a special case of subspace Verlet integration, with a
machine-learned approximation of the subspace forces, which we
believe is useful for motivating future work in this area.

2 RELATEDWORK
We discuss work in three areas most related to our approach: fast
and stable simulation methods appropriate for interactive applica-
tions, subspace techniques, and data-driven physics simulation.

Fast and Stable Simulation. One of the first fast, stable simulation
methods used in a AAA game combines a simple Verlet integration

scheme with a constraint projection step to simulate realistic char-
acter rag-dolls [Jakobsen 2001]. Position Based Dynamics [Müller
et al. 2007] methods are unconditionally stable, using a constraint
solver that limits extrapolation with an explicit/semi-implicit time
integration scheme that constrains the system to only physically-
valid states. Many frameworks tailored for industrial-caliber appli-
cations, such as Bullet, PhysX, Havok Cloth and Maya nCloth [Stam
2009], leverage the many extensions and improvements built atop
of PBD [Kim et al. 2012; Macklin and Müller 2013; Macklin et al.
2016; Müller and Chentanez 2011; Müller et al. 2014]. Interested
readers may refer to a more comprehensive review by Bender et
al. [2017].

More recently Projective Dynamics [Bouaziz et al. 2014; Liu
et al. 2013] has appeared as a competing method for fast and stable
physics simulation. In Projective Dynamics the constraint projec-
tion step is decoupled into local and global steps which are solved
separately. The local step is performed independently for each con-
straint and hence can be more easily parallelized. Due to this it has
quickly been applied to many domains such as cloth, elastic body
simulation, and fluids [Narain et al. 2016; Weiler et al. 2016]. How-
ever, in both Position Based Dynamics and Projective Dynamics the
computational cost usually scales with the number of vertices and
constraints, which can grow large for high resolution cloth. This
can make it inaccessible within the time constraints imposed by
games, in particular when these constraints become expensive to
compute such as self-collisions and collisions on arbitrary meshes.

Subspace Simulation. Subspace, or model reduction methods
project the equations of motion into a reduced subspace with the
hope of solving them more efficiently. This can work particularly
well in constrained systems, where one could expect the effective
degrees of freedom of a system to be far smaller than the dimension-
ality of the full state space. Many works explore the construction
of efficient and effective subspace bases [Harmon and Zorin 2013;
Huang et al. 2011; Sifakis and Barbic 2012; von Radziewsky et al.
2016; von Tycowicz et al. 2013; Wang et al. 2015; Yang et al. 2015,
2013], however a standard PCA basis remains an effective choice
(for a linear basis) in the presence of a representative set of defor-
mation examples [Barbič and James 2005; Treuille et al. 2006]. One
interesting extension to this is presented by Fulton et al. [2019]
who build a more compressed non-linear subspace on top of the
PCA subspace using an auto-encoder to accelerate the solution of
the implicit integration step of the simulation.

Given a basis, projecting the equations of motion is simple, but
incorporating other operations can be challenging. Previous work
has focused on applying these methods to elastic deformation and
FEM solvers [An et al. 2008; Barbič and James 2005; Kim and James
2009; Pan et al. 2015], cloth simulation [Hahn et al. 2014], articulated
characters [Galoppo et al. 2007, 2009; Kry et al. 2002; Xu and Barbič
2016], and collisions [Teng et al. 2015, 2014].

These approaches are difficult to incorporate with PBD-based
methods due to the difficulty in formulating the PBD constraint
projection as a subspace operator and so implicit Euler integration
remains a popular subspace integration scheme. However, Brandt
et al. [2018] apply subspace methods to Projective Dynamics by
leveraging a separate subspace for the constraints and sampling

Subspace Neural Physics: Fast Data-Driven Interactive Simulation SCA ’19, July 26–28, 2019, Los Angeles, CA, USA

Figure 2: Overview – we acquire training data X and Y offline using Maya’s nCloth, and perform PCA to obtain compressed
representations Z and W, before training a neural networkΦ to recurrently predict the compressed state of the object z∗, given
the previous state of object z∗t−1, and the compressed state of external objects w∗. Simulation object positions x∗ and normals
n∗ are computed directly from the models output, for rendering.

constraint projections to approximate their subspace representation
with a least squares fit.

Handling internal and external collisions efficiently is particu-
larly challenging for subspace methods due to the geometric opera-
tions involved. Teng et al. [2015; 2014] manage self-collisions by
applying forces on a sparse set of deprojected simulation points.
They support external collisions by allowing partial, albeit costly,
full-space simulation in areas of the mesh involving collisions. We
propose an alternative solution to efficiently compute the effects
of such external objects directly and entirely in the subspace (i.e.,
without any deprojection during simulation.)

Data-Driven Simulation. Data-Drivenmethods use data, typically
precomputed offline using accurate simulation techniques, to ideally
enhance, accelerate or approximate physical simulations at runtime.
This is popular in character clothing due to the cost of resolving
collisions with the cloth and character. Kim et al. [2013] precompute
and compress all possible secondary cloth motions on a character
and efficiently query this database at runtime. Xu et al. [2014] use
example cloth shapes to deform a character’s cloth based on its
pose. Wang et al. [2010] similarly layer wrinkles on top of a coarse
simulation mesh and while these methods produce high quality
results, they tend to have large memory footprints as much of the
training data must be kept resident. Luo et al. [2018] propose a
neural network specialized in modelling non-linear deformation
for full-space simulated objects while Edilson de Aguiar et al. [2010]
instead rely on PCA, as we do, to compute a cloth subspace and train
a simple linear model of the cloth dynamics within this subspace.
Although their performance and memory usage is similar to ours,
their approach does not scale to more complex deformations as
their linear model is too simple.

Data-driven methods have also been applied to fluid simula-
tion [Kim et al. 2018; Wiewel et al. 2018]. Regression forests can
predict the movement of fluid particles based on global information,
such as spatially-varying pressure [Ladicky et al. 2017; Ladický et al.
2015]. Since these models predict individual particle velocities, an
efficient GPU implementation is required to achieve the best per-
formance. Data-driven methods can also be employed selectively

to accelerate components of the physics pipeline: Thompson et
al. [2016] use a highly specialized deep neural network to solve the
incompressible Euler equations of a fluid simulation.

Alternatively, one can use data-driven methods to add fine de-
tails to coarse-scale simulations. Chu et al. [2017] parameterize a
feature descriptor using a Convolutional Neural Network (CNN)
to match simulation datasets, whereas Xie et al. [2018] use Gen-
erative Adversarial Networks for fluid flow super resolution. Jin
et al. [2018] use texture coordinates and a pixel based representa-
tion for producing the cloth’s wrinkles via a CNN. More recently,
Lahner et al. [2018] combine a coarse simulation with a Generative
Adversarial Network which adds high frequency details such as
wrinkles to cloth. Unfortunately, evaluating CNNs is expensive and
memory intensive, and so it is difficult for these techniques to reach
the multiple orders-of-magnitude gains needed for incorporation
in modern game engines (even with GPU acceleration).

The inherent challenge of data-driven methods typically lies in
striking a balance between runtime performance, memory usage,
accuracy, and model capacity/expressiveness. Ours is the first data-
driven method for deformable objects that performs well in all of
these domains.

3 OVERVIEW
Fig 2 outlines our method: we first collect high-quality simulation
data using Maya’s nCloth before computing a linear subspace using
PCA. We then devise a machine learning approach, including a
neural network model and a novel training methodology. We inte-
grate this model into an interactive runtime algorithm that includes
several optimizations, such as an efficient GPU decompression al-
gorithm and a vertex normal approximation method.

4 TRAINING DATA
Generally speaking, almost any simulation method is suitable for
acquiring the data for our method, as the only input to our training
procedure is a raw time-series of frame-by-frame vertex positions.
We detail the exact data acquisition process we use for our results.

SCA ’19, July 26–28, 2019, Los Angeles, CA, USA Holden, D. et al

Table 1: Training data acquisition parameters and timings.

Scene Material #Verts #Frames FPS Time
Ball & Sheet T-Shirt 2601 1,000,000 7.6 36h
Four Pins T-Shirt 2601 1,000,000 15.5 18h
Flag T-Shirt 2601 1,000,000 10.9 25h
Skirt Denim 3000 650,000 3.1 60h
Cape T-Shirt 2601 650,000 1.9 95h
Bunny Rubber 2503 200,000 0.4 129h
Dragon Rubber 3000 500,000 1.0 138h

We perform all simulation using Maya’s nCloth, capturing data
at 60 frames per second, with between 5 and 20 substeps and 10
and 25 constraint iterations, depending on simulation stability. For
cloth-like objects we primarily use the T-Shirt material preset with
small increases in weight and stretch resistance. For deformable
objects we use the solid rubber material preset with reduced friction
to allow objects to slide easily over the surface. We perform external
collisions against the triangles of the external geometry, while self-
collisions use vertex-on-vertex collisions for cloth, and triangle-on-
triangle collisions for deformable objects. In both cases we use a
fairly large collision thickness of ∼ 5 cm to ensure stability and
prevent the cloth snagging and breaking during simulation. This
additionally allows for some leniency during prediction without
immediate visual intersection artifacts appearing (see Section 6.4).

For simple interaction objects (e.g., pins, spheres) we gener-
ate their movement in the training data randomly by keyframing
random positions at random times to produce different kinds of
interaction. For cloth-character interactions we use a large motion
capture database of ∼ 6.5× 105 animation frames, stitched together
to form one large animation. We then simulate the entire series.
After simulation we check the data and exclude any frames where
unstable or bad behavior was seen. For the skirt scene we remove
the character’s arms because they intersect frequently with the leg
mesh geometry, causing the cloth to break.

Generally, we attempt to acquire between 105 and 106 frames
of training data. We found in most cases ∼ 105 was sufficient for
testing, while the best results were achieved with closer to ∼ 106
frames. For further details on the data acquisition please see Table 1.

5 TRAINING
We discuss how we train our model, including its parameterization,
the network architecture, and our training methodology.

5.1 Parameterization
Given the simulation data gathered in the previous section, we
construct our training set by first flattening the vertex positions
at each frame t into a single, large vector xt ∈ R3c , where c is
the number of vertices. We then concatenate these vectors into
a single large matrix X = [x0, x1, ..., xn−1] ∈ R3c×n . This matrix
represents the states of the simulated object, after which we must
build a representation of the states of the external objects at each
frame. For simple objects, such as balls, we can use their 3D position;
while, for complex objects like full characters, we use the positions
of every joint relative to a reference fame (in the case of the skirt
we use the hip joint as the reference frame, and in the case of

Figure 3: Basis size impact on complex geometry and dy-
namics. There is a subtle loss of finer wrinkles as we reduce
the size of the basis. The skirt is themost challenging to com-
press, suffering from more substantial degradation.

cape we use the neck joint as the reference frame) flattened into a
large vector, ignoring the joint rotations. For objects with a moving
reference frame, we also include the position of the ground relative
to this frame so our system knows the gravity direction and floor
location as well as the velocity, acceleration, rotational velocity,
and rotational acceleration of this frame. For the flag, we include
wind speed and direction. After building this parameterization, we
have a single large vector representing the state of the external
objects for each frame yt ∈ Re , where e is the number of degrees
of freedom of the external objects, which we also concatenate into
a single large matrix Y = [y0, y1, ..., yn−1] ∈ Re×n .

We now apply PCA to both X and Y and use the computed
transformation matrices to construct subspace representations Z =
U(X − xµ), W = V(Y − yµ), where U ∈ Ru×3c , V ∈ Rv×e , u
is the number of subspace bases (in our results we use 64, 128
and 256), v is the number of bases used to compress the external
object representation. Here, xµ is the mean value of all x’s, and
yµ is the mean value of all y’s. As we require no compression of
the parameterization for the external objects in our examples, we
typically set v = e . If the memory usage is too large to perform
PCA we subsample the data before applying it.

PCA compression inevitably causes a loss in detail, particularly
for objects with many potential states, such as fine folds; however,
we found that 256 bases generally preserved the majority of details.
For a visual comparison, see Fig 3.

5.2 Initial Model
Given subspace data Z and W, our goal is to devise a model capable
of predicting zt from zt−1, zt−2 and wt . Since simulated objects
generally express inertia, with a tendency toward some average
rest state (represented by zero after PCA), a good initial model for
zt (denoted here as z̄t) is:

z̄t = α ⊙ zt−1 + β ⊙ (zt−1 − zt−2), (1)

where α and β are parameters of the model and ⊙ is component-
wise multiplication. We obtain the values of these parameters by
solving a linear least squares equation individually for each dimen-
sion of α and β , denoted bym:[

αm βm
]
=

[
zt,m

] [zt−1,m
zt−1,m − zt−2,m

]†
, (2)

with t ∈ [2,n) and where † denotes the matrix pseudo-inverse.

Subspace Neural Physics: Fast Data-Driven Interactive Simulation SCA ’19, July 26–28, 2019, Los Angeles, CA, USA

Figure 4: Visual illustration of our training method – stan-
dard procedures target the most accurate result on a per-
frame basis (left). These predictions are unstable due to
high velocities produced by aggressive over-correction. Our
method targets an accurate prediction across an window of
frames (right), resulting in less aggressive and more stable
corrections.

5.3 Extended Model
Since z̄t is only a very rough approximation of zt , and does not
take into account the effects of external objects w, we know it will
not be capable to accurately model our training data. We therefore
train a neural network Φ to approximate the residual effects of the
model, such that:

zt = z̄t + Φ
([

z̄t zt−1 wt
]T) (3)

Here, we parameterizeΦ by a standard feed-forward neural network
with 10 layers, each layer (except the output layer) using the ReLU
activation [Nair and Hinton 2010]. Excluding the input and output
layers we set the number of hidden units at each layer to 1.5× the
PCA basis size, which we found struck a good trade-off between
capacity and performance.

5.4 Network Training
The standard way of training Φ would be to iterate over the dataset
in mini-batches and to train the network to predict the value zt − z̄t
for all t . While this approach will produce a low training error, the
auto-recurrent nature of Φ, and the coupled velocity step of Equa-
tion (1) results in unstable behaviour when predictions are fed back
into the network at the next time step. Due to this, previous work
has proposed to feed back the prediction into the neural network at
the next time-step for correction [Dollár et al. 2010; Kanazawa et al.
2017; Oberweger et al. 2016]. Inspired by this, we present a training
algorithm which predicts motion over a window of frames, and
back-propagates errors through the complete integration procedure
described by Equation (3) to ensure stable long term prediction. For
a detailed algorithmic explanation please see Algorithm 1.

At a high level our training procedure is as follows: given a small
window of values for z and w from the training set, we take the
first two frames z0, z1 and add some small noise r0, r1 to perturb
them slightly off the training trajectory. From these initial states,
we repeatedly use Equation (1) and Equation (3), to predict the
following frames, feeding back in previous predictions at each new
time step. Once the full trajectory is predicted, we compute the
average positional error and velocity error across the window of

Algorithm 1: Our training algorithm for Φ. Given a short win-
dow of s frames, we predict the subspace state of the physical
object, and use the error to update the network parameters θ .
While we present this procedure for a single training sample
here, we apply it to each element in the mini-batch individually
and average the result when updating θ .
Function Train(z, w, s, θ):

/* Sample two noise vectors r0, r1 */
r0, r1 ∼ N(0, rσ)
/* Add noise to initial states z0, z1 */

z∗0, z∗1 ← z0 + r0, z1 + r1
/* Predict values of z∗ over a short window s */

for i ← 2 to s do
/* Predict z̄∗i using α and β */

z̄∗i ← α ⊙ z∗i−1 + β ⊙ (z
∗
i−1 − z∗i−2)

/* Predict z∗i using Φ */

z∗i ← z̄∗i + Φ
([

z̄∗i z∗i−1 wi
]T ;θ)

end
/* Compute Loss L using Mean Absolute Error */

Lpos ←

 z∗2→s − z2→s

1

Lvel ←

 z∗2→s−z∗1→(s−1)

dt −
z2→s−z1→(s−1)

dt

1

L ← Lpos + Lvel
/* Update network parameters θ */

θ ← AmsGrad(θ ,∇L)
end

motion. We pass this error to the AmsGrad optimizer [Reddi et al.
2018], using automatic derivatives computed from TensorFlow.

To motivate this training procedure, consider the case where the
network predicts a large change in position from one time step to
the next. This difference will be used in the next time step by Equa-
tion (1) to produce a large initial guess which, itself, may require
aggressive correction from the network back toward the training
data. As this is repeated, the correction sizes increase and the pre-
diction becomes unstable. If we, however, train over a window of
frames, the network will only produce corrections that improve the
result over the entire window, encouraging smaller, more stable
corrections. Another way to view our training procedure is as a
variant of Back-Propagation Through Time [Rumelhart et al. 1986],
where errors are not only back-propagated through the network
but also through the integration step of Equation (1). Fig 4 provides
visual intuition.

We repeat this training procedure on mini-batches of size 16,
using overlappingwindows of size 32, for around 100 epochs or until
training converges. We use a learning rate of 0.0001, and a learning
rate decay ratio of 0.999. We use a noise standard deviation rσ of
0.01, which we found by visualizing the result of this perturbation
in the first 3 components of the PCA space. Training takes between
10 and 48 hours depending on the complexity of the setup and the
number of PCA bases used. We include more discussions on the
importance of this training method in Section 7.2.

SCA ’19, July 26–28, 2019, Los Angeles, CA, USA Holden, D. et al

Figure 5: Comparison of our normal computation method
against the ground truth. In most cases our result produces
extremely small differences.

6 RUNTIME IMPLEMENTATION
We detail the runtime implementation of our method in an interac-
tive environment, including the evaluation of the neural network,
how we compute the normals of the object surfaces for rendering,
and the technique we use to prevent visible intersections.

6.1 Interactive Application
We render the results of our method in a simple interactive 3D
application written in C++ and DirectX. We re-implement the pre-
processing and neural network operations in single-threaded C++
code and load the binary network weights obtained during our
training procedure. We perform some simple optimisations to the
network evaluation, including the re-use of memory buffers and
sparse vector-matrix products that are possible due to the zero-
valued hidden units produced as a consequence of ReLU activations.

For the cape and skirt results, we implement a basic character
controller using Motion Matching [Clavet 2016] and allow the user
to dynamically control the character with a gamepad. The data we
use in the motion matching includes motion clips that were present
in the training data. Most other user interaction is simply enabled
by allowing the user to manipulate the interaction object(s) with a
mouse, or sliders on the user interface.

6.2 GPU Decompression
Since Equation (3) expects the compressed state z as input, the only
place the full object state x is required is for rendering. We can
therefore send the compressed cloth state z to the GPU, and perform
decompression only at render time. To do so, we use a simple GPU
compute shader which, for each object vertex, computes the dot
product of z and the three rows of matrix UT, corresponding to
the x , y and z components of that vertex’s position, before finally
adding the mean value xµ . This approach has two advantages over
a naïve CPU decompression method: first, GPU parallelism greatly
accelerates the computation of x, which we found could take up to
1 ms on the CPU; second, it reduces the GPU-CPU memory transfer
by an order-of-magnitude, which is important on platforms where
transferring the entire object state becomes prohibitively slow.

Figure 6: We fit capsules to each joint of the character and
use them as collision geometry to adjust for visible intersec-
tions in the final render. A typically example of this fix is
shown above.

6.3 Vertex Normal Prediction
At render time it is not sufficient to only have access to vertex posi-
tions, as the deformed vertex normals are also needed for rendering.
Previous subspace simulation methods either omit this computa-
tion or perform a naïve re-calculation of per-face normals (each
frame) followed by a distribution to neighboring vertices. This can
be inefficient: we found that a basic CPU implementation requires ∼
150 µs (in addition to the CPU decompression and memory transfer
costs). While it is possible to perform this computation on the GPU,
it can be difficult to implement efficiently as it requires performing
parallel random access writes.

Instead, similar to the method presented in James et al. [2002],
we propose learning a linear regression from the subspace state to
the full state’s normal vectors, and we perform this regression on
the GPU compute shader alongside the vertex position computation.
Given the vertex normals at each frame, flattened into one large
vector and concatenated together N = [n0,n1, ...,nn] ∈ R3c×n ,
we can find the matrix Q that best maps from the subspace rep-
resentation Z to the vertex normals using the following equation:
Q = (N − nµ)Z†, where nµ is the mean of n for all t . Once com-
puted, QT can be used in the same way as UT to predict the vertex
normals of each vertex, by taking the dot product of the subspace
state with the three columns of QT that correspond to the vertex
normal, adding the mean nµ and re-normalizing.

Since the subspace representation was not constructed with
normal prediction in mind, there is no guarantee that this method
of normal prediction will be accurate, however we found in practice
it yielded accurate enough results. For a visual comparison, please
see Fig 5.

One limitation to our method is that the computational cost
of this technique grows with the number of bases we use, and so
we expect that a GPU-accelerated implementation of the standard
per-face distribution method could be more efficient when large
enough basis terms are employed.

6.4 Avoiding Visible Intersections
Our method learns to efficiently perform collisions, however, due to
errors induced by the subspace compression and inaccuracies in the
prediction result, visible intersection artifacts between the external
objects and the simulation objects may still occur. Moreover, since
we defer the computation of the full state x until just prior to render-
ing, we leave no opportunity to efficiently address these artifiacts
(e.g., geometrically, on the CPU). In the spirit of maintaining high
performance, we must resolve these intersections at render time.

Subspace Neural Physics: Fast Data-Driven Interactive Simulation SCA ’19, July 26–28, 2019, Los Angeles, CA, USA

Previous work, such as Edilson de Aguiar et al. [2010], solve this
problem using a depth bias when writing fragments, even when
they intersect with geometry of labelled character components.
While this would work in our case, we propose an alternative, sim-
ple and efficient solution that instead projects intersecting vertices
onto the surface of simple proxy collision objects representing the
character. This projection is simple to evaluate on the GPU with
our existing compute shader that decompresses the cloth state and
computes shading normals.

First, we build a proxy collision object for the articulated char-
acter by fitting capsules (with varying start and end radii) to all
the vertices associated to each character joint (see Fig 6). Once
fit, we pass the capsule start/end positions and radii to the GPU
decompression compute shader. Here, we additionally test the (de-
compresed) vertex positions for intersection against every relevant
capsule and, if an intersection is found, we project the vertex back
onto the capsule surface. We only adjust the position of the vertex,
leaving the computed normal unmodified to not affect the shading.

Providing vertex displacement errors generated during simu-
lation are not significant enough to result in projection onto the
“backside” of a capsule, our capsule projection pass removes small
visible intersections from our final results. For a visual example
please see Fig 6.

7 RESULTS AND EVALUATION
We test our method on a variety of scenes with different defor-
mations and interactions with external forces and objects some of
which are shown in Fig 1. For visualizations of all scenes tested
please see supplementary video. The scenes in which we apply our
method include a hanging sheet interacting with a user-controllable
ball, a user manipulating the pinned corners of a deformable sheet,
a flag on a pole where the user can move the pole or adjust the

Figure 7: Generalization: our method versus ground truth
from a test set.

Figure 8: Applying [Brandt et al. 2018] to a selection of our
test scenes. Although it produces compelling elastic defor-
mation, this method struggles to produce accurate deforma-
tions resulting from collisions.

wind speed and direction, a cape and a skirt attached to an animat-
ing character controlled dynamically by the user, demonstrating
generalization as well as self and character-collisions, a deformable
bunny with a user-controlled ball that can squash and push the
object, and a deformable dragon perturbed by a moving teapot. In
all examples we produce natural deformation behavior. In Fig 11
we stress tests our method on scenes with hundreds of bunnies
(left) and 16 characters (right), each simulated independently at
framerates of 120 FPS and 240 FPS.

7.1 Evaluation
We evaluate the accuracy and performance of our method, includ-
ing comparisons to ground truth data (from a held-out test set), the
state-of-the-art in subspace methods [Brandt et al. 2018], and some
alternative machine learning models we implement as baselines
(including common recurrent models such as LSTM and GRU net-
works). We also present the impact of PCA basis size on our results.
Please refer to the supplemental video for full visual comparisons.

Comparisons. Fig 7 compares our method to ground truth from
a held-out test set. Although we lose some detail by subspace com-
pression and network approximation, our method generalizes well
and produces realistic results visually similar to ground truth.

Fig 9 illustrates how our method performs when we adjust the
number of PCA bases. Users can easily trade quality for perfor-
mance by adjusting the number of bases and network size. See
Table 2 for more detailed performance metrics.

Fig 8 applies the method of Brandt et al. [2018] to some of our
scenes: while producing natural deformation, it struggles to accu-
rately capture deformations resulting from collisions, particularly
when such deformations are not present in the subspace basis.

In Fig 10 we visualize our method’s prediction in the subspace
of the first three PCA bases. We see that, even when our method is
not entirely accurate, it still often produces motions with similar
shape and timing profiles to that of the ground truth.

Performance. One of the key strengths of our method is its per-
formance - both in runtime speed and memory usage. In Table 2
we compare our method numerically against other methods and
ground truth data taken from a test set. Our method achieves speed-
ups ranging from ∼ 300× to ∼ 5000× over the raw simulation used
to gather the training data. It also has good performance when
compared to other state-of-the-art methods such as HRPD [Brandt
et al. 2018]. Compared neural network structures are designed to
be as similar as possible in size and memory use. All performance

SCA ’19, July 26–28, 2019, Los Angeles, CA, USA Holden, D. et al

Figure 9: Our method when using different sizes of PCA ba-
sis.

measurements are made on an Intel Xeon E5-1650 3.5 GHz CPU
single threaded, and a GeForce GTX 1080 Titan GPU.

7.2 Ablation Study
In this section we perform an ablation study to observe the effects
of removing various components of our system. We test these abla-
tions across several models including Linear Regression [de Aguiar
et al. 2010]), Radial Basis Functions (RBF), Feed-forward Neural
Networks (Our Method), and recurrent models (RNN, GRU, and
LSTM Networks).

State Difference Prediction. We propose to train a model which
in essence predicts the delta between two time steps. If instead we
predict the absolute value of the next time step we observe stable
prediction behaviour across all models (with the exception of Linear
Regression), however, the predictions are very inaccurate, and the
observed movement is stiff with many inter-penetrations visible.
We found this issue to be particularly bad for RBFs, which also
suffer from poor runtime performance and memory usage when
using large amounts of training data.

Training Procedure. If we predict the delta between time steps we
find the system is more accurate and less stiff, however, without our
training procedure (instead using the mean squared error computed
at each frame independently) we find all models to be extremely
unstable during runtime prediction (see Fig 12).

Initial State Noise. We add some noise to the initial states dur-
ing our training procedure. We observe that this encourages our
network to learn to correct small errors, driving the prediction
towards the training data when it diverges – increasing stability.
Although we found dropout [Gal and Ghahramani 2016; Srivastava
et al. 2014] also able to produce a similar regularizing effect, we

found our solution was more effective in improving the stability of
predictions.

Initial Model. In Section 5.2 we present a simple linear model
used as an initial prediction of the next time step.We found omitting
this model gave less accurate results and less stability. One reason
for this increased stability is that theα and β parameters essentially
provide a way of damping the velocity and pulling the system
toward the rest state when it is far from the training data.

Recurrent Model. When using recurrent models such as RNNs,
GRUs, and LSTMs trained with our loss function we observed no
large differences in quality to our proposed Feed-forward Neural
Network structure – however for these models the training time is
often long, and the hidden state initialization needs to be handled
carefully. Given that physical systems can be fully described by their
position and velocity (for plastic materials, the rest state and rest
state velocity are also required), we also expect that the “memory”
provided by recurrent models is not required for our problem. We
therefore opt for the simpler Feed-forward model in our proposed
method.

8 SUBSPACE VERLET INTEGRATION
One way to interpret our method is as a special case of elastic
subspace Verlet integration where an efficient approximation of the
non-linear subspace forces is used. To derive this interpretation we
start with a standard Verlet forward integration method described
as follows:

xt = xt−1 + (xt−1 − xt−2) + dt2M−1 ft−1, (4)

where M−1 is the inverse mass matrix, f are the forces, and
dt is the time-step. Depending on the model used, typically the
forces f are split into separate terms such as internal forces fint (x),
external forces fext (x, y), constant forces such as gravity fдrav , and
other forces such as Coriolis forces for objects in moving reference
frames. If we assume an extremely simple linear elastic system
centered around the rest state represented by the zero vector (this
can be constructed by subtracting the actual rest state from all other
states), we can introduce constant stiffness and damping matrices K
and V and split the force term into linear elastic forces and other
non-linear forces f̃ as follows:

ft = −Kxt − V
xt − xt−1

dt
+ f̃t (5)

which can then be inserted into Equation (4) and factorized to
obtain

xt = (I − dt2M−1K)xt−1 + (I − dtM−1V)(xt−1 − xt−2) + dt2M−1 f̃t−1,
(6)

which can be simplified by letting A = I − dt2M−1K, B = I −
dtM−1V, and C = dt2M−1:

xt = Axt−1 + B(xt−1 − xt−2) + C f̃t−1. (7)

Subspace Neural Physics: Fast Data-Driven Interactive Simulation SCA ’19, July 26–28, 2019, Los Angeles, CA, USA

Figure 10: Visualizing our method’s first three PCA bases predictions (black) versus ground truth (red), on an unseen test set.
Left to right: Bunny, Ball & Sheet, Four Pins, Flag, Skirt and Cape.

Figure 11: Left: simulation of 256 deformable bunnies using
64 bases at ∼120 FPS. Right: simulation of 16 dancers using
256 bases at ∼240 FPS.

Given a orthogonal subspace matrix U such as that constructed
by PCA, we can produce a subspace version of this equation by
multiplying all terms by U,

Uxt = UAxt−1 + UB(xt−1 − xt−2) + UC f̃t−1, (8)

and by letting z = Ux , Â = UAUT, B̂ = UBUT, and Ĉ = UC we get
the following:

zt = Âzt−1 + B̂(zt−1 − zt−2) + Ĉ f̃t−1. (9)

The result is an equationwhere the first two terms aremuch cheaper
to compute than before as the dimension of z is far smaller than
that of x, but with a force calculation term f̃t−1 which is potentially
still expensive as it is a function of x and y. Previous work has
therefore often been focused on finding methods for computing
subspace forces in a more efficient way, and many solutions have
been found for particular force terms such as internal forces [Barbič
and James 2005], Coriolis forces [Kim and James 2011], and external
and internal forces resulting from collisions [Teng et al. 2015, 2014].

We can observe that because each basis in U is constructed to
be statistically independent we expect Â and B̂ in this case to be
close to diagonal matrices (see Appendix A). Then, if we discard
the non-diagonal entries the multiplication can be written as a
component-wise vector multiplication with diagonal entries given
as α and β :

zt = α ⊙ zt−1 + β ⊙ (zt−1 − zt−2) + Ĉ f̃t−1, (10)

and finally by replacing Ĉ f̃t−1 with Φ we can recover Equation (3):

zt = α ⊙ zt−1 + β ⊙ (zt−1 − zt−2) + Φ
([

z̄t zt−1 wt
]T)
. (11)

Following this derivation we see that our method reduces to a
special case of linear elastic subspace Verlet integration, where α
and β are found from data, and a neural network Φ approximates
all the other forces directly in the subspace. And, since our network
Φ takes z̄ as input rather than x̄, it can do so efficiently and with
a cost proportional to the basis size (rather than the number of
vertices).

Figure 12: Without our training method the prediction is
unstable.

Figure 13: Figure showing the extrapolation behaviour of
the Four Pins scene. Bad extrapolation can be prevented by
simply clipping the inputs and outputs of the systemwithin
the range given in the training data.

This interpretation is important because, although it assumes
an over-simplified inaccurate physical model, it opens up potential
for future hybrid data-driven subspace methods using different
integration schemes and/or more complex and accurate physical
models which can potentially target more specific components of
the simulation such as the expensive to calculate forces resulting
from external collisions.

8.1 Limitations & Future Work
Like all data-driven methods our technique has a number of limita-
tions. As expected, there is no guarantee that it will generalize well
beyond the training distribution. However, we found that clipping
the inputs and outputs of the system to the minimum and maxi-
mum found in the training data proved effective to combat this. See
Fig 13 and supplementary video for visual examples. Similarly, all
external object must be parameterized which in some cases can be
difficult for example with varying numbers of external objects.

SCA ’19, July 26–28, 2019, Los Angeles, CA, USA Holden, D. et al

Table 2: Performance &Memory Comparison – we compare
to Hyper-Reduced Projective Dynamics (HRPD) [Brandt
et al. 2018], LSTMs [Hochreiter and Schmidhuber 1997] and
GRUs [Cho et al. 2014]. We demonstrate performance gains
of ∼ 5× compared to HRPD and between ∼ 300× to ∼ 5000×
compared to ground truth. Our architectural choice fairs
well compared to the alternative LSTM and GRU baselines
we explored.

Scene Method Time (µs) Memory (MB)
CPU GPU CPU GPU

Bunny

Reference 2.5 × 106 — — —
HRPD 2834 — 26.0 —

LSTM 256 448 128 5.4 7.5
GRU 256 389 128 5.9 7.5
Ours 256 360 128 5.7 7.5

Ours 128 / 64 113 / 34 68 / 30 1.4 / 0.3 3.7 / 1.8

Ball &
Sheet

Reference 1.32 × 105 — — —
HRPD 2623 — 20.8 —

LSTM 256 447 157 5.4 7.8
GRU 256 377 157 5.9 7.8
Ours 256 446 157 5.7 7.8

Ours 128 / 64 103 / 38 77 / 42 1.4 / 0.3 3.9 / 1.9

Four
Pins

Reference 6.45 × 104 — — —
HRPD 2711 — 20.8 —

LSTM 256 433 157 5.4 7.8
GRU 256 403 157 5.9 7.8
Ours 256 447 157 5.7 7.8

Ours 128 / 64 121 / 38 77 / 42 1.4 / 0.3 3.9 / 1.9

Flag

Reference 9.17 × 104 — — —
LSTM 256 434 157 5.4 7.8
GRU 256 384 157 5.9 7.8
Ours 256 344 157 5.7 7.8

Ours 128 / 64 103 / 39 77 / 42 1.4 / 0.3 3.9 / 1.9

Skirt

Reference 3.22 × 105 — — —
LSTM 256 447 183 5.4 9.0
GRU 256 425 183 5.9 9.0
Ours 256 342 183 5.7 9.0

Ours 128 / 64 115 / 38 79 / 60 1.4 / 0.3 4.5 / 2.2

Cape

Reference 5.26 × 105 — — —
LSTM 256 491 157 5.5 7.8
GRU 256 393 157 6.0 7.8
Ours 256 259 157 5.9 7.8

Ours 128 / 64 124 / 41 77 / 42 1.5 / 0.3 3.9 / 1.9

Dragon

Reference 1.0 × 106 — — —
LSTM 256 459 164 5.7 9.0
GRU 256 363 164 5.7 9.0
Ours 256 287 164 5.7 9.0

Ours 128 / 64 84 / 37 82 / 37 1.4 / 0.3 4.5 / 2.2

Like all subspace methods we are limited by the expressiveness
of the basis, and if additional fine details cannot be captured accu-
rately with the addition of more modes, the computational cost can
increase quickly.

Our method requires a time consuming training data acquisition,
with up to several days of simulation time needed. As with any

data-driven approach, this process requires proper management,
e.g., removing any erroneous simulation data from the training
set. We did not take any special measures here, and we expect this
capture and preprocessing can be accelerated by simply running
multiple simulations in parallel. Converged training time for our
method is long and, although initial results for testing can be ready
in an hour or two, our final models took roughly a day to train.

On its own, our method cannot guarantee that no intersections
will occur with external geometry without relying on a separate
solution like the capsule projection method (Section 6.4). Similarly,
we cannot provide hard guarantees that self-collisionswill not occur,
however it seems challenging to provide such guarantees while
also maintaining a simulation that runs entirely in the subspace
(and with decompression only deferred until render time).

Currently we only show our results on elastic objects but we
believe our method can be extended to plastic objects. One option is
to explicitly track the rest state, predicting the change in rest state
with the neural network. In plastic setups, care would likely need
to be taken in how training data is acquired, as objects cannot be
expected to return to their rest state when there are no interactions.
An approach using adaptive bases may be required to combat the
increased number of potential states [Hahn et al. 2014; Kim and
James 2009].

Finally, our examples only show interactions where the external
object is fixed in place, and only show simulated objects where the
reference frame for the object is controlled externally. We believe
it would be straightforward to extend this to having the neural
network predict the forces applied to the reference frame of external
objects, to allow them tomove freely. This would allow for unpinned
interactions, such as throwing boxes at a deformable object and
having it react by rolling around on the floor. Here, we expect
similar care would need to be taken in setting up the training data
simulation and collection process.

9 CONCLUSION
We presented a data-driven method for subspace physical simu-
lation of deformation, including self-collisions, and interactions
with external objects and forces, combining subspace simulation
with machine learning. Our method generates high-quality results
several orders-of-magnitude faster than the reference simulation,
significantly outperforming the state-of-the-art. The applicability
to a broad set of deformation behaviors, its performance and its
modest memory footprint make our method practical for use in
modern AAA game and virtual reality engines.

A DIAGONALITY OF Â AND B̂
If we construct our subspace projection matrix U using PCA we expect each
basis to be orthogonal and statistically independent. Given this, we should
also expect each dimension of z to change largely independently. As such,
we would expect that in a relation such as zt = Âzt−1 + B̂(zt−1 − zt−2),
we would find the matrices Â and B̂ to be largely diagonal as non-diagonal
entries would imply statistical coupling between the dimensions of z. To
test this hypothesis we compute matrices Â and B̂ using linear least squares
fitting of the above equation on our training data Z. As expected, we find
that Â and B̂ are primarily diagonal matrices, as visualized in Fig 14.

Subspace Neural Physics: Fast Data-Driven Interactive Simulation SCA ’19, July 26–28, 2019, Los Angeles, CA, USA

Figure 14: Visualisation of matrices Â and B̂ using the 64
bases of the cloth from the Cape scene. Typical values of the
diagonal of Â range from 0.995 to 1.0while typical values on
the diagonal of B̂ range from 0.75 to 1.0.

REFERENCES
Steven S. An, Theodore Kim, and Doug L. James. 2008. Optimizing Cubature for

Efficient Integration of Subspace Deformations. In ACM SIGGRAPH Asia 2008
Papers (SIGGRAPH Asia ’08). ACM, New York, NY, USA, Article 165, 10 pages.
https://doi.org/10.1145/1457515.1409118

Jernej Barbič and Doug L. James. 2005. Real-Time Subspace Integration for St. Venant-
Kirchhoff Deformable Models. In ACM SIGGRAPH 2005 Papers (SIGGRAPH ’05).
ACM, New York, NY, USA, 982–990. https://doi.org/10.1145/1186822.1073300

Jan Bender, Matthias Müller, and Miles Macklin. 2017. Position-Based Simulation
Methods in Computer Graphics. In EUROGRAPHICS 2017 Tutorials. Eurographics
Association. https://doi.org/10.2312/egt.20171034

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans.
Graph. 33, 4, Article 154 (July 2014), 11 pages. https://doi.org/10.1145/2601097.
2601116

Christopher Brandt, Elmar Eisemann, and Klaus Hildebrandt. 2018. Hyper-reduced
Projective Dynamics. ACM Trans. Graph. 37, 4, Article 80 (July 2018), 13 pages.
https://doi.org/10.1145/3197517.3201387

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014.
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches.
CoRR abs/1409.1259 (2014). arXiv:1409.1259 http://arxiv.org/abs/1409.1259

Mengyu Chu and Nils Thuerey. 2017. Data-Driven Synthesis of Smoke Flows with
CNN-based Feature Descriptors. CoRR abs/1705.01425 (2017). arXiv:1705.01425
http://arxiv.org/abs/1705.01425

Simon Clavet. 2016. Motion Matching and The Road to Next-Gen Animation. In Proc.
of GDC 2016.

Edilson de Aguiar, Leonid Sigal, Adrien Treuille, and Jessica K. Hodgins. 2010. Stable
Spaces for Real-time Clothing. In ACM SIGGRAPH 2010 Papers (SIGGRAPH ’10).
ACM, New York, NY, USA, Article 106, 9 pages. https://doi.org/10.1145/1833349.
1778843

P. Dollár, P. Welinder, and P. Perona. 2010. Cascaded pose regression. In 2010 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition. 1078–1085.
https://doi.org/10.1109/CVPR.2010.5540094

Lawson Fulton, Vismay Modi, David Duvenaud, David I. W. Levin, and Alec Jacobson.
2019. Latent-space Dynamics for Reduced Deformable Simulation. Computer
Graphics Forum (2019).

Yarin Gal and Zoubin Ghahramani. 2016. A Theoretically Grounded Application of
Dropout in Recurrent Neural Networks. In Proceedings of the 30th International
Conference on Neural Information Processing Systems (NIPS’16). Curran Associates
Inc., USA, 1027–1035. http://dl.acm.org/citation.cfm?id=3157096.3157211

Nico Galoppo, Miguel Otaduy, Serhat Tekin, Markus Gross, and Ming Lin. 2007. Soft
Articulated Characters with Fast Contact Handling. Comput. Graph. Forum 26 (09
2007), 243–253. https://doi.org/10.1111/j.1467-8659.2007.01046.x

Nico Galoppo, Miguel A. Otaduy, William Moss, Jason Sewall, Sean Curtis, and Ming C.
Lin. 2009. Controlling Deformable Material with Dynamic Morph Targets. In
Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games (I3D ’09).
ACM, New York, NY, USA, 39–47. https://doi.org/10.1145/1507149.1507156

Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W. Sumner, Forrester
Cole, Mark Meyer, Tony DeRose, and Markus Gross. 2014. Subspace Clothing
Simulation Using Adaptive Bases. ACM Trans. Graph. 33, 4, Article 105 (July 2014),
9 pages. https://doi.org/10.1145/2601097.2601160

David Harmon and Denis Zorin. 2013. Subspace Integration with Local Deformations.
ACM Trans. Graph. 32, 4, Article 107 (July 2013), 10 pages. https://doi.org/10.1145/
2461912.2461922

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural
Comput. 9, 8 (Nov. 1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

J. Huang, Y. Tong, K. Zhou, H. Bao, and M. Desbrun. 2011. Interactive Shape Interpola-
tion through Controllable Dynamic Deformation. IEEE Transactions on Visualization
and Computer Graphics 17, 7 (July 2011), 983–992. https://doi.org/10.1109/TVCG.
2010.109

Thomas Jakobsen. 2001. Advanced character physics. In Game Developers Conference.
Doug L. James and Dinesh K. Pai. 2002. DyRT: Dynamic Response Textures for Real

Time Deformation Simulation with Graphics Hardware. ACM Trans. Graph. 21, 3
(July 2002), 582–585. https://doi.org/10.1145/566654.566621

Ning Jin, Yilin Zhu, Zhenglin Geng, and Ronald Fedkiw. 2018. A Pixel-Based Framework
for Data-Driven Clothing. CoRR abs/1812.01677 (2018). arXiv:1812.01677 http:
//arxiv.org/abs/1812.01677

Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and Jitendra Malik. 2017.
End-to-end Recovery of Human Shape and Pose. CoRR abs/1712.06584 (2017).
arXiv:1712.06584 http://arxiv.org/abs/1712.06584

Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim,MarkusH. Gross, and
Barbara Solenthaler. 2018. Deep Fluids: A Generative Network for Parameterized
Fluid Simulations. CoRR abs/1806.02071 (2018). arXiv:1806.02071 http://arxiv.org/
abs/1806.02071

Doyub Kim, Woojong Koh, Rahul Narain, Kayvon Fatahalian, Adrien Treuille, and
James F. O’Brien. 2013. Near-exhaustive Precomputation of Secondary Cloth Effects.
ACM Trans. Graph. 32, 4, Article 87 (July 2013), 8 pages. https://doi.org/10.1145/
2461912.2462020

Theodore Kim and Doug L. James. 2009. Skipping Steps in Deformable Simulation
with Online Model Reduction. In ACM SIGGRAPH Asia 2009 Papers (SIGGRAPH
Asia ’09). ACM, New York, NY, USA, Article 123, 9 pages. https://doi.org/10.1145/
1661412.1618469

Theodore Kim and Doug L. James. 2011. Physics-based Character Skinning Us-
ing Multi-domain Subspace Deformations. In Proceedings of the 2011 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA ’11). ACM, New
York, NY, USA, 63–72. https://doi.org/10.1145/2019406.2019415

Tae-Yong Kim, Nuttapong Chentanez, and Matthias Müller-Fischer. 2012. Long Range
Attachments - a Method to Simulate Inextensible Clothing in Computer Games. In
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA ’12). Eurographics Association, Goslar Germany, Germany, 305–310. http:
//dl.acm.org/citation.cfm?id=2422356.2422399

Paul G. Kry, Doug L. James, and Dinesh K. Pai. 2002. EigenSkin: Real Time Large
Deformation Character Skinning in Hardware. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’02). ACM, New
York, NY, USA, 153–159. https://doi.org/10.1145/545261.545286

Lubor Ladicky, SoHyeon Jeong, Nemanja Bartolovic, Marc Pollefeys, and Markus Gross.
2017. Physicsforests: Real-time Fluid Simulation Using Machine Learning. In ACM
SIGGRAPH 2017 Real Time Live! (SIGGRAPH ’17). ACM, New York, NY, USA, 22–22.
https://doi.org/10.1145/3098333.3098337

L’ubor Ladický, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, andMarkus Gross.
2015. Data-driven Fluid Simulations Using Regression Forests. ACM Trans. Graph.
34, 6, Article 199 (Oct. 2015), 9 pages. https://doi.org/10.1145/2816795.2818129

Zorah Lähner, Daniel Cremers, and Tony Tung. 2018. DeepWrinkles: Accurate and
Realistic Clothing Modeling. CoRR abs/1808.03417 (2018). arXiv:1808.03417 http:
//arxiv.org/abs/1808.03417

Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan. 2013. Fast
Simulation of Mass-spring Systems. ACM Trans. Graph. 32, 6, Article 214 (Nov.
2013), 7 pages. https://doi.org/10.1145/2508363.2508406

Ran Luo, Tianjia Shao, HuaminWang,Weiwei Xu, Xiang Chen, Kun Zhou, and Yin Yang.
2018. NNWarp: Neural Network-based Nonlinear Deformation. IEEE Transactions
on Visualization and Computer Graphics PP (11 2018), 1–1. https://doi.org/10.1109/
TVCG.2018.2881451

Miles Macklin and Matthias Müller. 2013. Position Based Fluids. ACM Trans. Graph.
32, 4, Article 104 (July 2013), 12 pages. https://doi.org/10.1145/2461912.2461984

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: Position-
based Simulation of Compliant Constrained Dynamics. In Proceedings of the 9th
International Conference on Motion in Games (MIG ’16). ACM, New York, NY, USA,
49–54. https://doi.org/10.1145/2994258.2994272

Matthias Müller and Nuttapong Chentanez. 2011. Solid Simulation with Oriented
Particles. In ACM SIGGRAPH 2011 Papers (SIGGRAPH ’11). ACM, New York, NY,
USA, Article 92, 10 pages. https://doi.org/10.1145/1964921.1964987

Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2014. Strain
Based Dynamics. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (SCA ’14). Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 149–157. http://dl.acm.org/citation.cfm?id=2849517.2849542

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
based dynamics. Journal of Visual Communication and Image Representation 18, 2
(2007), 109 – 118. https://doi.org/10.1016/j.jvcir.2007.01.005

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Restricted
Boltzmann Machines. In Proceedings of the 27th International Conference on Inter-
national Conference on Machine Learning (ICML’10). Omnipress, USA, 807–814.
http://dl.acm.org/citation.cfm?id=3104322.3104425

Rahul Narain, Matthew Overby, and George E. Brown. 2016. ADMM ⊇ Projec-
tive Dynamics: Fast Simulation of General Constitutive Models. In Proceedings

https://doi.org/10.1145/1457515.1409118
https://doi.org/10.1145/1186822.1073300
https://doi.org/10.2312/egt.20171034
https://doi.org/10.1145/2601097.2601116
https://doi.org/10.1145/2601097.2601116
https://doi.org/10.1145/3197517.3201387
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1705.01425
http://arxiv.org/abs/1705.01425
https://doi.org/10.1145/1833349.1778843
https://doi.org/10.1145/1833349.1778843
https://doi.org/10.1109/CVPR.2010.5540094
http://dl.acm.org/citation.cfm?id=3157096.3157211
https://doi.org/10.1111/j.1467-8659.2007.01046.x
https://doi.org/10.1145/1507149.1507156
https://doi.org/10.1145/2601097.2601160
https://doi.org/10.1145/2461912.2461922
https://doi.org/10.1145/2461912.2461922
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/TVCG.2010.109
https://doi.org/10.1109/TVCG.2010.109
https://doi.org/10.1145/566654.566621
http://arxiv.org/abs/1812.01677
http://arxiv.org/abs/1812.01677
http://arxiv.org/abs/1812.01677
http://arxiv.org/abs/1712.06584
http://arxiv.org/abs/1712.06584
http://arxiv.org/abs/1806.02071
http://arxiv.org/abs/1806.02071
http://arxiv.org/abs/1806.02071
https://doi.org/10.1145/2461912.2462020
https://doi.org/10.1145/2461912.2462020
https://doi.org/10.1145/1661412.1618469
https://doi.org/10.1145/1661412.1618469
https://doi.org/10.1145/2019406.2019415
http://dl.acm.org/citation.cfm?id=2422356.2422399
http://dl.acm.org/citation.cfm?id=2422356.2422399
https://doi.org/10.1145/545261.545286
https://doi.org/10.1145/3098333.3098337
https://doi.org/10.1145/2816795.2818129
http://arxiv.org/abs/1808.03417
http://arxiv.org/abs/1808.03417
http://arxiv.org/abs/1808.03417
https://doi.org/10.1145/2508363.2508406
https://doi.org/10.1109/TVCG.2018.2881451
https://doi.org/10.1109/TVCG.2018.2881451
https://doi.org/10.1145/2461912.2461984
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/1964921.1964987
http://dl.acm.org/citation.cfm?id=2849517.2849542
https://doi.org/10.1016/j.jvcir.2007.01.005
http://dl.acm.org/citation.cfm?id=3104322.3104425

SCA ’19, July 26–28, 2019, Los Angeles, CA, USA Holden, D. et al

of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA
’16). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 21–28.
http://dl.acm.org/citation.cfm?id=2982818.2982822

Markus Oberweger, Paul Wohlhart, and Vincent Lepetit. 2016. Training a Feedback
Loop for Hand Pose Estimation. CoRR abs/1609.09698 (2016). arXiv:1609.09698
http://arxiv.org/abs/1609.09698

Zherong Pan, Hujun Bao, and Jin Huang. 2015. Subspace Dynamic Simulation Using
Rotation-strain Coordinates. ACM Trans. Graph. 34, 6, Article 242 (Oct. 2015),
12 pages. https://doi.org/10.1145/2816795.2818090

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. 2018. On the Convergence of
Adam and Beyond. In International Conference on Learning Representations. https:
//openreview.net/forum?id=ryQu7f-RZ

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1986. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol. 1. MIT Press, Cambridge, MA,
USA, Chapter Learning Internal Representations by Error Propagation, 318–362.
http://dl.acm.org/citation.cfm?id=104279.104293

Eftychios Sifakis and Jernej Barbic. 2012. FEM Simulation of 3D Deformable Solids:
A Practitioner’s Guide to Theory, Discretization and Model Reduction. In ACM
SIGGRAPH 2012 Courses (SIGGRAPH ’12). ACM, New York, NY, USA, Article 20,
50 pages. https://doi.org/10.1145/2343483.2343501

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Research 15 (2014), 1929–1958.
http://jmlr.org/papers/v15/srivastava14a.html

J. Stam. 2009. Nucleus: Towards a unified dynamics solver for computer graphics. In
2009 11th IEEE International Conference on Computer-Aided Design and Computer
Graphics. 1–11. https://doi.org/10.1109/CADCG.2009.5246818

Yun Teng,MarkMeyer, TonyDeRose, and Theodore Kim. 2015. Subspace Condensation:
Full Space Adaptivity for Subspace Deformations. ACM Trans. Graph. 34, 4, Article
76 (July 2015), 9 pages. https://doi.org/10.1145/2766904

Yun Teng, Miguel A. Otaduy, and Theodore Kim. 2014. Simulating Articulated Subspace
Self-contact. ACM Trans. Graph. 33, 4, Article 106 (July 2014), 9 pages. https:
//doi.org/10.1145/2601097.2601181

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. 2016.
Accelerating Eulerian Fluid Simulation With Convolutional Networks. CoRR
abs/1607.03597 (2016). arXiv:1607.03597 http://arxiv.org/abs/1607.03597

Adrien Treuille, Andrew Lewis, and Zoran Popović. 2006. Model Reduction for Real-
time Fluids. In ACM SIGGRAPH 2006 Papers (SIGGRAPH ’06). ACM, New York, NY,

USA, 826–834. https://doi.org/10.1145/1179352.1141962
Alexis Vaisse. 2016. Ubisoft Cloth Simulation: Performance Postmortem and Journey

from C++ to Compute Shaders. In GDC 2016 Talks.
Philipp von Radziewsky, Elmar Eisemann, Hans-Peter Seidel, and Klaus Hildebrandt.

2016. Optimized Subspaces for Deformation-based Modeling and Shape Interpo-
lation. Comput. Graph. 58, C (Aug. 2016), 128–138. https://doi.org/10.1016/j.cag.
2016.05.016

Christoph von Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt.
2013. An Efficient Construction of Reduced Deformable Objects. ACM Trans. Graph.
32, 6, Article 213 (Nov. 2013), 10 pages. https://doi.org/10.1145/2508363.2508392

HuaminWang, Florian Hecht, Ravi Ramamoorthi, and James F. O’Brien. 2010. Example-
based Wrinkle Synthesis for Clothing Animation. In ACM SIGGRAPH 2010 Papers
(SIGGRAPH ’10). ACM, New York, NY, USA, Article 107, 8 pages. https://doi.org/
10.1145/1833349.1778844

Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2015. Linear Subspace
Design for Real-time Shape Deformation. ACM Trans. Graph. 34, 4, Article 57 (July
2015), 11 pages. https://doi.org/10.1145/2766952

Marcel Weiler, Dan Koschier, and Jan Bender. 2016. Projective Fluids. In Proceedings of
the 9th International Conference on Motion in Games (MIG ’16). ACM, New York,
NY, USA, 79–84. https://doi.org/10.1145/2994258.2994282

Steffen Wiewel, Moritz Becher, and Nils Thuerey. 2018. Latent-space Physics: To-
wards Learning the Temporal Evolution of Fluid Flow. CoRR abs/1802.10123 (2018).
arXiv:1802.10123 http://arxiv.org/abs/1802.10123

You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. 2018. tempoGAN: A Temporally
Coherent, Volumetric GAN for Super-resolution Fluid Flow. CoRR abs/1801.09710
(2018). arXiv:1801.09710 http://arxiv.org/abs/1801.09710

Hongyi Xu and Jernej Barbič. 2016. Pose-space Subspace Dynamics. ACM Trans. Graph.
35, 4, Article 35 (July 2016), 14 pages. https://doi.org/10.1145/2897824.2925916

Weiwei Xu, Nobuyuki Umentani, Qianwen Chao, Jie Mao, Xiaogang Jin, and Xin
Tong. 2014. Sensitivity-optimized Rigging for Example-based Real-time Clothing
Synthesis. ACM Trans. Graph. 33, 4, Article 107 (July 2014), 11 pages. https:
//doi.org/10.1145/2601097.2601136

Yin Yang, Dingzeyu Li, Weiwei Xu, Yuan Tian, and Changxi Zheng. 2015. Expediting
Precomputation for Reduced Deformable Simulation. ACM Trans. Graph. 34, 6,
Article 243 (Oct. 2015), 13 pages. https://doi.org/10.1145/2816795.2818089

Y. Yang, W. Xu, X. Guo, K. Zhou, and B. Guo. 2013. Boundary-Aware Multidomain
Subspace Deformation. IEEE Transactions on Visualization and Computer Graphics
19, 10 (Oct 2013), 1633–1645. https://doi.org/10.1109/TVCG.2013.12

http://dl.acm.org/citation.cfm?id=2982818.2982822
http://arxiv.org/abs/1609.09698
http://arxiv.org/abs/1609.09698
https://doi.org/10.1145/2816795.2818090
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
http://dl.acm.org/citation.cfm?id=104279.104293
https://doi.org/10.1145/2343483.2343501
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1109/CADCG.2009.5246818
https://doi.org/10.1145/2766904
https://doi.org/10.1145/2601097.2601181
https://doi.org/10.1145/2601097.2601181
http://arxiv.org/abs/1607.03597
http://arxiv.org/abs/1607.03597
https://doi.org/10.1145/1179352.1141962
https://doi.org/10.1016/j.cag.2016.05.016
https://doi.org/10.1016/j.cag.2016.05.016
https://doi.org/10.1145/2508363.2508392
https://doi.org/10.1145/1833349.1778844
https://doi.org/10.1145/1833349.1778844
https://doi.org/10.1145/2766952
https://doi.org/10.1145/2994258.2994282
http://arxiv.org/abs/1802.10123
http://arxiv.org/abs/1802.10123
http://arxiv.org/abs/1801.09710
http://arxiv.org/abs/1801.09710
https://doi.org/10.1145/2897824.2925916
https://doi.org/10.1145/2601097.2601136
https://doi.org/10.1145/2601097.2601136
https://doi.org/10.1145/2816795.2818089
https://doi.org/10.1109/TVCG.2013.12

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Training Data
	5 Training
	5.1 Parameterization
	5.2 Initial Model
	5.3 Extended Model
	5.4 Network Training

	6 Runtime Implementation
	6.1 Interactive Application
	6.2 GPU Decompression
	6.3 Vertex Normal Prediction
	6.4 Avoiding Visible Intersections

	7 Results and Evaluation
	7.1 Evaluation
	7.2 Ablation Study

	8 Subspace Verlet Integration
	8.1 Limitations & Future Work

	9 Conclusion
	A Diagonality of and
	References

