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Fig. 1. Results of our method applied to raw motion capture data. Left: Raw uncleaned data. Middle: Our method. Right: Hand cleaned data.

Raw optical motion capture data often includes errors such as occluded
markers, mislabeled markers, and high frequency noise or jitter. Typically
these errors must be fixed by hand - an extremely time-consuming and
tedious task. Due to this, there is a large demand for tools or techniques
which can alleviate this burden. In this research we present a tool that
sidesteps this problem, and produces joint transforms directly from raw
marker data (a task commonly called “solving”) in a way that is extremely
robust to errors in the input data using the machine learning technique of
denoising. Starting with a set of marker configurations, and a large database
of skeletal motion data such as the CMU motion capture database [CMU
2013b], we synthetically reconstruct marker locations using linear blend
skinning and apply a unique noise function for corrupting this marker data -
randomly removing and shifting markers to dynamically produce billions of
examples of poses with errors similar to those found in real motion capture
data. We then train a deep denoising feed-forward neural network to learn a
mapping from this corrupted marker data to the corresponding transforms
of the joints. Once trained, our neural network can be used as a replacement
for the solving part of the motion capture pipeline, and, as it is very robust
to errors, it completely removes the need for any manual clean-up of data.
Our system is accurate enough to be used in production, generally achieving
precision to within a few millimeters, while additionally being extremely
fast to compute with low memory requirements.
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1 INTRODUCTION
Although a large number of different motion capture systems have
been developed using many kinds of technologies, optical motion
capture still remains the main technique used by most large movie
and game studios due to its high accuracy, incredible flexibility, and
comfort of use. Yet, optical motion capture has one major downside
which severely limits the throughput of data that can be processed
by an optical motion capture studio - namely that after each shoot
the raw marker data requires “cleaning”, a manual process whereby
a technician must fix by hand all of the errors found in the data
such as occluded markers, mislabeled markers, and high frequency
noise. Although this process can often be accelerated by commercial
software which can provide powerful tools for aiding in the cleanup
of motion capture data [Vicon 2018], it can still often take several
hours per capture and is almost always the most expensive and time
consuming part of the pipeline. Once the data has been cleaned,
further automatic stages are required including “solving”, where
rigid bodies are fitted to groups of markers, and “retargeting”, where
inverse kinematics is used to recover the local joint transformations
for a character with a given skeleton topology [Xiao et al. 2008].
In this paper we propose a data-driven approach to replace the

solving stage of the optical motion capture pipeline. We train a
deep denoising feed-forward neural network to map from marker
positions to joint transforms directly. Our network is trained using
a custom noise function designed to emulate typical errors that
may appear in marker data including occluded markers, mislabeled
markers, and marker noise. Unlike conventional methods which fit
rigid bodies to subsets of markers, our technique is extremely robust
to errors in the input data, which completely removes the need for
anymanual cleaning of marker data. This results in a motion capture
pipeline which is completely automatic and can therefore achieve a
much higher throughput of data than existing systems.
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To train our system, we require a large database of skeletal mo-
tion capture data such as the CMU motion capture database and a
set of marker configurations, specified by the local marker offsets
from the joints and their associated skinning weights. From this
we synthetically reconstruct marker locations in the database using
linear blend skinning, and then emulate the kinds of errors found in
motion capture data using a custom noise function. This corrupted
motion capture data is used to train the neural network.

To evaluate our technique, we present the results of our method
on two different skeleton configurations and marker sets, and in
a number of difficult situations that previously required extensive
manual cleaning. To validate our design choices we compare our
neural network architecture and training procedure against several
alternative structures and show that our design decisions perform
best.

The core contribution of this research is a production-ready opti-
cal motion capture solving algorithm which is fast to compute, has
low memory requirements, achieves high precision, and completely
removes the need for manual cleanup of marker data.

2 RELATED WORK
In this section we first review previous approaches tackling the prob-
lem of motion capture cleanup, followed by previous works which
use the machine learning concept of denoising to solve problems in
computer graphics.

Motion Capture Cleanup. To tackle the problem of motion cap-
ture cleanup, most researchers have looked towards techniques
which introduce some prior belief about the behavior of motion
capture markers or skeletal joints. There are two significant kinds
of priors that researchers have used to fix broken data: temporal
priors [Aristidou and Lasenby 2013; Baumann et al. 2011; Burke and
Lasenby 2016; Dorfmüller-Ulhaas 2005; Liu et al. 2014; Ringer and
Lasenby 2002; Zordan and Van Der Horst 2003], which exploit the
fact that markers and joints must follow the laws of physics in their
movement and cannot, for example, jump instantaneously to new
locations - and pose-based priors [Chai and Hodgins 2005; Feng
et al. 2014b; Li et al. 2010; Sorkine-Hornung et al. 2005; Tautges et al.
2011], which encode some knowledge about which poses may be
possible for the character to achieve and which are unlikely.

An interesting physically based prior is introduced by Zordan et
al. [2003] who present a novel solution to the solving and retarget-
ing parts of the motion capture pipeline, using a physically based
character which tracks the motion capture data. Virtual springs
are attached between the markers and a physical character model,
and resistive joint torques applied to force the character follow the
marker data with minimal force. The proposed system sidesteps
the retargeting stage of the pipeline while additionally allowing
the character to avoid a number of unrealistic poses, but does not
perform well in the case of marker swaps and is slow to compute as
it requires a physical simulation to be performed.
Another approach that can be considered primarily a prior over

the dynamic behavior of markers is data-driven marker gap fill-
ing [Baumann et al. 2011; Feng et al. 2014a; Liu and McMillan 2006].
In these approaches a large database of marker data is used to re-
trieve motion data capable of filling a given gap, which is then

further edited to produce the in-between marker motion. A similar
joint-space approach is presented by Aristidou et al. [2018] who use
the self-similarity present in motions to avoid the use of an external
database. Like ours, these approaches are data-driven and so can
generate high quality results when the right kind of data is present,
yet unlike ours, they tend to fail with more complicated errors such
as marker swaps.

A popular PCA pose-based prior is introduced by Chai et al. [2005]
and applied to sparse accelerometer data by Tautges et al. [2011].
Using a large database of motion capture data and local PCA a per-
formance capture system is produced that takes as input low dimen-
sional signals consisting of just a fewmarker positions and produces
as output the full character motion. The PCA-decomposition pro-
duces a manifold in the pose-space which can additionally be used
as a prior for removing errors in the input signal. Akhter et al. [2012]
extend similar linear models by factorizing them into temporal and
spatial components. Since PCA and other similar basis models are
linear techniques it is hard to predict how they may behave under
complex errors such as marker swaps, while using local linear mod-
els does not scale to large amounts of data as it requires many local
basis to be constructed and interpolated.

Another pose-based prior is BoLeRO [Li et al. 2010], which uses
a prior belief about the distances between markers and the joint
lengths to fill gaps when markers are occluded. Additional soft
constraints about the dynamics can be added and an optimization
problem solved to fill gaps where markers are occluded. While this
approach produces very accurate results for marker occlusions, it
cannot deal well with marker swaps.

Our approach is a data-driven pose-based prior, and so it broadly
has the same advantages and disadvantages of existing data-driven
techniques. The use of a neural network achieves greater scalability
and performance over techniques such as k-nearest neighbor which
scales poorly with the size of the training data. It also allows us
to deal robustly with marker swaps, not just marker occlusions -
something that is rarely covered by existing work. Since we do not
design our algorithm explicitly around the types of error we wish
to fix, instead encoding this aspect of the research using a custom
noise function, we retain a much greater level of flexibility and
adaptability.

Denoising Neural Networks. The machine learning concept of
denoising has been used to achieve state of the art results on a large
number of problems in computer graphics.

Classically, denoising has been used as an unsupervised learning
technique to train autoencoders to produce dis-entangled represen-
tations of data [Vincent et al. 2010]. Such autoencoders are naturally
suited for tasks such as data recovery or in-painting [Xie et al. 2012;
Yeh et al. 2017], but have also been used to improve classification or
regression performance due to their ability to learn natural represen-
tations [II et al. 2015; Varghese et al. 2016]. Another popular form of
denoising autoencoder is the Deep Boltzmann Machine [Salakhut-
dinov and Hinton 2009] which learns a compression of the input
by stochastically sampling binary hidden units and attempting to
reconstruct the input data. In this case the noise is represented by
the stochastic sampling process and acts as a regularizer, ensuring
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Fig. 2. Our rigid body fitting procedure. First, a subset of markers and
a reference joint are chosen. Second, a rigid body is extracted using the
average position of these makers in the database relative to the chosen
reference joint. Finally, this rigid body is fitted back into the data using rigid
body alignment.

the neural network learns to only output values found within the
domain of the training data distribution [Hu et al. 2016].
More recently, neural networks have been used for the task of

denoising Monte-Carlo renderings [Bako et al. 2017; Chaitanya et al.
2017]. Like our research, these methods benefit from synthetically
producing corrupt data using a custom noise function, for example
removing subsections of an image or adding Gaussian noise to
pixels.

Most similar to our research are several existing works which use
deep neural networks to fix corrupted animation data by autoen-
coding [Holden et al. 2016, 2015; Mall et al. 2017; Taylor et al. 2007;
Xiao et al. 2015]. Although effective, these techniques primarily
work in the joint space of the character and in some cases (E.G.
that shown in Fig 1) this representation makes it extremely difficult
to reconstruct the animation to a high enough accuracy without
information from the original marker locations.
We take inspiration from these existing works using denoising,

and apply a similar approach to the solving part of the motion
capture pipeline.

3 PRE-PROCESSING
Our method starts with two inputs: a large database of skeletal
motion capture data, and a set of marker configurations from a
variety of different capture subjects.

Scaling. Before training, and during runtime, we scale all motion
data such that the character has a uniform height. This form of nor-
malization ensures we don’t have to explicitly deal with characters
of different heights in our framework, only characters of different
proportions. An appropriate scaling factor can either be computed
from the T-pose using the average length of the character’s joints,
or extracted directly from the motion capture software where it is
often calculated during the calibration stage. Other than this, our
system makes no assumptions about the capture subject and is ex-
plicitly designed to work well on a variety of subjects of different

body shapes and proportions. All processes described from now on
are therefore assumed to take place after scaling.

Representation. Given a character of j joints, and a data-set of
n poses, we represent animation data using the joint’s global ho-
mogeneous transformation matrices using just the rotation and
translation components Y ∈ Rn×j×3×4. Givenm markers, we rep-
resent the local marker configurations for each of the n different
poses in the database using the local offset from each marker to
each joint Z ∈ Rn×m×j×3, and the skinning weights associated with
these marker offsets w ∈ Rm×j . While technically we support local
offsets that are time varying, in practice they almost always remain
constant across motions of the same actor. Similarly, for simplicity
we consider the skinning weights constant across all marker config-
urations. For joints which are not assigned to a given marker we
set the skinning weight and offset to zero.

Linear Blend Skinning. Using this representation we can compute
a set of global marker positions X ∈ Rn×m×3 using the linear blend
skinning function X = LBS(Y,Z), which can be defined as follows:

LBS(Y,Z) =
j∑

i=0
wi ⊙ (Yi ⊗ Zi ). (1)

Here we compute a sum over j joints, where the ⊗ function rep-
resents the homogeneous transformation matrix multiplication of
each of the n marker offsets in Zi by the n transformation matri-
ces Yi , computed for each of the m markers, and the ⊙ function
represents a component-wise multiplication, which weights the con-
tribution of each of the j joints in the resulting transformed marker
positions, computed for each of the n poses.

Although we use linear blend skinning, any alternative skinning
function such as Dual Quaternion Skinning [Kavan et al. 2008]
should also be suitable, and more accurate skinning methods may
produce even improved results.

Local Reference Frame. For data-driven techniques it is important
to represent the character in some local reference frame. To robustly
find a local reference frame to describe our data which does not
involve knowing the joint transforms ahead of time, we make use
of rigid body alignment [Besl and McKay 1992]. From a subset of
chosen markers around the torso we calculate the mean location in
the database of these markers relative to a chosen joint (usually one
of the spine joints) and use these as the vertices of a rigid body we
then fit into the data. After performing this process for all n given
poses, the result is a set of n reference frames F ∈ Rn×3×4 from
which we can describe the data locally. For a visual description of
this process please see Fig 2.

Statistics. After computing a set of local reference frames F and
transforming every pose in our database into the local space, we
calculate some statistics to be used later during training. First, we cal-
culate the mean and standard deviation of our joint transformations
yµ ∈ Rj×3×4, yσ ∈ Rj×3×4, followed by the mean and covariance
of the marker configurations zµ ∈ Rm×j×3, zΣ ∈ R(m×j×3)×(m×j×3)
respectively. We then compute the mean and standard deviation
of marker locations xµ ∈ Rm×3, xσ ∈ Rm×3 (where X can be com-
puted using LBS). Finally we compute what we call the pre-weighted
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ALGORITHM1: This algorithm represents a single iteration of training
for our network. It takes as input a mini-batch of n poses Y and updates
the network weights θ .

Function Train (Y ∈ Rn×j×3×4, F ∈ Rn×3×4)
Transform joint transforms into local space.
Y← F−1 ⊗ Y
Sample a set of marker configurations.
Z ∼ N(zµ , zΣ)
Compute global marker positions via linear blend skinning.
X← LBS(Y, Z)
Corrupt markers.
X̂← Corrupt(X)
Compute pre-weighted marker offsets.
Ẑ←

∑j
i=0 wi ⊙ Zi

Normalize data, concatenate, and input into neural network.
X̂← (X̂ − xµ ) ÷ xσ

Ẑ← (Ẑ − ẑµ ) ÷ ẑσ

Ŷ← NeuralNetwork(
[
X̂ Ẑ

]
; θ )

Denormalize, calculate loss, and update network parameters.
Ŷ← (Ŷ ⊙ yσ ) + yµ

L ← |λ ⊙ (Ŷ − Y) |1 + γ ∥θ ∥22
θ ← AmsGrad(θ, ∇L)

End

local offsets Ẑ ∈ Rn×m×3, Ẑ =
∑j
i=0wi ⊙ Zi , along with their mean

and standard deviation ẑσ ∈ Rm×3, ẑµ ∈ Rm×j×3. The pre-weighted
local offsets are a set of additional values provided as an input to the
neural network to help it distinguish between characters with dif-
ferent body proportions or marker placements. Providing the neural
network with the full set of local offsets Z would be inefficient (each
frame would requirem × j × 3 values) so we instead compute the
pre-weighted local offsets to act as a summary of the full set of local
offsets in a way that only uses three values per-marker. For markers
skinned to a single joint (often most markers) these pre-weighted
offsets will contain exactly that offset to that single joint, while
for markers skinned to multiple joints it will be a weighted sum of
the different offsets. In this way the pre-weighted offsets contain
most of the information about the marker layout but in a far more
condensed form.
This concludes the pre-processing required by our method.

4 TRAINING
In this section we describe the neural network structure used to
learn a mapping between marker locations and joint transforms and
the procedure used to train it.
Our network works on a per-pose basis, taking as input a batch

of n frames of marker positions X and the associated pre-weighted
marker configurations Ẑ, and producing as output a corresponding
batch of n joint transforms Y. The structure of our network is a
six layer feed-forward ResNet [He et al. 2015] described in Fig 4.
Each ResNet block uses 2048 hidden units, with a “ReLU” activa-
tion function and the “LeCun” weight initialization scheme [LeCun
et al. 1998]. As we add noise to the input in the form of marker
corruption, we find that no additional regularization in the form of
Dropout [Srivastava et al. 2014] is required.

ALGORITHM 2: Given marker data X as input this algorithm is used
to randomly occlude markers (placing them at zero) or shift markers
(adding some offset to their position).

Function Corrupt (X ∈ Rn×m×3;σ o ∈ R, σ s ∈ R, β ∈ R)
Sample probability at which to occlude / shift markers.
αo ∼ N(0, σ o ) ∈ Rn

α s ∼ N(0, σ s ) ∈ Rn

Sample using clipped probabilities if markers are occluded / shifted.
Xo ∼ Bernoulli(min( |αo |, 2σ o )) ∈ Rn×m
Xs ∼ Bernoulli(min( |α s |, 2σ s )) ∈ Rn×m
Sample the magnitude by which to shift each marker.
Xv ∼ Uniform(−β, β ) ∈ Rn×m×3
Move shifted markers and place occluded markers at zero.
return (X + Xs ⊙ Xv ) ⊙ (1 − Xo )

End

We now describe the training algorithm presented in more detail
in Algorithm 1 and summarized in Fig 3. Given a mini-batch of n
poses Y, we first sample a batch of n marker configurations Z using
the mean zµ and covariance zΣ computed during preprocessing.
From these we compute the marker positions X using linear blend
skinning. We then corrupt these marker positions using the Corrupt
function (described in Algorithm 2), producing X̂. We compute the
pre-weighted marker offsets Ẑ to summarize the sampled marker
configuration. We normalize the computed marker positions and
summarized local offsets using the means and standard deviations
xµ , xσ , ẑµ , ẑσ computed during preprocessing. We then input these
variables into the neural network to produce Ŷ. We denormalize
this using yµ and yσ , and compute a weighted l1 norm of the differ-
ence between Ŷ and the joint transforms originally given as input
Y, scaled by a given set of user weights λ. Finally, we compute the
gradient of this loss, along with the gradient of a small l2 regulariza-
tion loss where γ = 0.01, and use this to update the weights of the
neural network using the AmsGrad algorithm [Reddi et al. 2018],
a variation of the Adam [Kingma and Ba 2014] adaptive gradient
descent algorithm.

This procedure is repeated with a mini-batch size of 256, until the
training error converges or the validation error increases. We imple-
ment the whole training algorithm in Theano [Theano Development
Team 2016] including the linear blend skinning and corruption func-
tions. This allows us to evaluate these functions dynamically on the
GPU at training time.

Our training function has a number of user parameters that must
be set, the most important of which is the user weights λ. These
weights must be tweaked to adjust the importances of different
joint rotations and translations in the cost function while addition-
ally accounting for the different scales of the two quantities. This
weighting also allows for adjusting the importance when there is
an imbalance in the distribution of joints around the character such
as when the character has many finger joints. In our results we
use two different constant factors for balancing the weighting of
rotations and translations respectively, and then slightly scale up
the weights of some important joints (such as the feet) and slightly
scale down the weights for some other less important joints (such
as the fingers).
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Fig. 3. Given an input pose Y we sample a marker configuration Z and reconstruct marker positions X. We then corrupt these marker positions to produce X̂,
and input this, along with the pre-weighted marker offsets Ẑ into a neural network which produces joint transforms Ŷ. We compare Ŷ to the original input
pose Y, and use the error L to update the neural network weights.

Fig. 4. Diagram of our network consisting of six layers of 2048 hidden units,
using five residual blocks.

Our corruption function described in Algorithm 2 is designed
to emulate marker occlusions, marker swaps, and marker noise. It
does this by either removing markers or adjusting marker positions.
Surprisingly, we found that randomly shifting a marker’s position is
a more effective corruption method than actually swapping marker
locations in the data directly. One reason for this is that markers can
sometimes swap with markers from other characters or objects in
the environment which don’t appear in the input. The parameters
of this corruption function σo ,σ s , β control the levels of corruption

applied to the data. The value σo adjusts the probability of a marker
being occluded, σ s adjusts the probability of a marker being shifted
out of place, and β controls the scale of the random translations
applied to shifted markers. We set these values to 0.1, 0.1, and
50cm respectively, which we found struck a good balance between
preserving the original animation and ensuring the network learned
to fix corrupted data.

5 RUNTIME
After training, applying our method to new data is fairly straight-
forward and consists of the following stages. First, we use a simple
procedure to remove outliers; markers which are located very far
from related markers. Second, we fit the rigid body found during
the preprocessing stage to the subset of non-occluded markers to
find a local reference frame for the data. Next, we transform the
marker positions into the local reference frame and pass them to
the neural network to produce the resulting joint transforms, after-
wards transforming them back in the global reference frame. Then,
we post-process these transforms using a basic temporal prior in the
form of a Savitzky-Golay filter [1964] which removes any residual
high frequency noise or jitter from the output. Finally, we orthogo-
nalize the rotational parts of the joint transforms and pass them to
a custom Jacobian inverse-kinematics based retargeting solution to
extract the local joint transforms. Each process is now described in
more detail below.

Outlier Removal. We use a basic outlier removal technique which
uses the distances between markers to find markers which are ob-
viously badly positioned. If found, any “outlier” markers are con-
sidered occluded from then on. This simple algorithm is designed
to be translation and rotation invariant as it runs before the rigid
body fitting and tends to only occlude markers very obviously in
the wrong position. It is only effective due to the robustness of the
rest of our pipeline.

We start by computing the pairwisemarker distancesD ∈ Rn×m×m
for each frame in the training dataX. From this we compute the min-
imum, maximum, and range of distances across all frames Dmin ∈

Rm×m , Dmax ∈ R
m×m , Dranдe = Dmax − Dmin (shown in Fig 5).
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Fig. 5. Visualization of the distance range matrix Dranдe . Sets of markers
with a small range of distances represent more rigidly associated markers.
The outlier removal process is more sensitive to violated distance constraints
within these small ranges, yet allows for much larger distance variations for
markers which have a larger range of distances present in the training data.

At runtime, given a new set of marker pairwise distances for
every frame in the input D̂ ∈ Rn×m×m , we perform an iterative
process for each frame which repeatedly removes (occludes) the
marker which violates the following set of constraints to the greatest
degree,

D̂ < Dmin − δ Dranдe ,

D̂ > Dmax + δ Dranдe .

Each time a marker is removed we also remove the marker’s
corresponding row and column from the distance matrices involved.
Once all markers are within the range of these constraints we stop
the process. This process effectively removes markers which are
either much further from other markers than their largest recorded
distance in the training data, or much nearer to other markers
than their smallest recorded distance in the training data, with a
sensitivity related to overall range of distances in the data, scaled
by the user constant δ (set to 0.1 in this work).

Solving. Once outliers have been removed from the input we fit
the rigid body extracted in the preprocessing stage and described in
Section 3 to the markers of the body which are not occluded and use
this to find a local reference frame F. It should be noted that at least
four markers associated with the rigid body must be present for this
process to be successful [Besl and McKay 1992]. Next, we set the
position of any occluded markers to zero to emulate the behavior of
the corruption function described in Algorithm 2. Finally, we put the
resulting marker positions and pre-weighted marker configurations
through the neural network to produce joint transforms, which we
convert back into the world space using the inverse reference frame
F−1.

Fig. 6. Comparison showing our result before and after retargeting has been
performed. Left: Shown in grey is the initial character state with local joint
angles computed by mulitplying each joint’s rotation in Y by the inverse of
its parent’s rotation. Shown in red are the target joint positions extracted
from Y. Shown in blue are the original marker positions given as input. Right:
Character state after retargeting has been performed. The joint positions
now match those given in Y. The resulting local joint transforms are the
final output of our method.

Character Markers (m) Joints (j) Training Frames (n)
Production 60 68 5,397,643
Research 41 31 5,366,409
Table 1. Details of the characters used in our results and evaluation.

Filtering. As our method works on a per-pose basis, when a large
number of markers appear or disappear from view quickly this can
occasionally introduce jittery movements in the resulting joint trans-
forms. To tackle this we introduce a basic post-process in the form
of a Savitzky-Golay filter [1964]. We use a filter with polynomial
degree three and window size of roughly one eighth of a second.
This filter we apply to each component of the joint transformation
matrices individually. Using a degree three polynomial assumes
locally that the data has a jerk of zero, which in many cases is a
good prior for motion capture data [Flash and Hogans 1985]. For
motions which contain movements that break this assumption (such
as those with hard impacts) it is possible for a user to tweak the
window width of this filter to achieve a sharper, less smoothed out
result. For more discussion about the advantages and limitations of
this approach please see Section 8.

Retargeting. After filtering, we orthogonalize the rotational parts
of these joint transforms using SVD (alternatively Gram-Schmidt
orthogonalization can be used) and pass the results to a custom
Jacobian Inverse Kinematics solver based on [Buss 2004] to extract
the local joint transformations. Although we use this retargeting so-
lution, we expect any standard retargeting solution to work equally
well such as Autodesk’s HumanIK [Autodesk 2016]. For a visual
demonstration of how our results look before and after retargeting
please see Fig 6.
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Fig. 7. Results of our method applied to raw motion data. Left: Raw un-
cleaned data. Middle: Our method. Right: Hand cleaned data.

Fig. 8. Results of our method applied to motion corrupted using our custom
noise function. Left: Our Method. Right: Ground Truth. Top: Production
Character. Bottom: Research Character.

Fig. 9. Results of our method applied to motion where half of the markers
have been removed. Left: OurMethod. Right: Ground Truth. Top: Production
Character. Bottom: Research Character.

6 RESULTS
In this section we show the results of our method on two different
kinds of characters (see Table 1). The Production character is from
a production game development environment and uses a propri-
etary motion capture database consisting of high quality motions
captured for use in games, with a complex character skeleton in-
cluding details such as finger joints. The Research character uses
a more simple custom marker layout, with the skeleton structure
and animation data from the BVH conversion of the CMU motion
capture database [CMU 2013a]. Both characters are trained using
roughly 5.3 million frames of animation at 120 fps which represents
about 12 hours of motion capture data.
In Fig 1 and Fig 7 we show the results of our method using the

Production character with several difficult-to-clean recordings, and
compare our results to those produced by hand cleaning. Even when
the data is very badly broken our method produces results difficult
to distinguish from the hand cleaned result.
Next, we show some artificial experiments designed to demon-

strate the robustness of our method. In Fig 8 we show our method
using both the Production and Research characters applied when
the data has been corrupted using our custom noise function. In
Fig 9 we show our method on both characters using data where
half of the markers have been removed, and in Fig 10 we show our
results using data where all but one of the markers related to the
right arm have been removed. In all cases we produce motion very
close to the original ground truth.
Our method achieves high levels of precision - showing that it

can be used both in production environments, when there is access
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Fig. 10. Results of our method applied to motion where all but one of the
markers related to the right arm have been removed. Left: Our Method.
Right: Ground Truth. Top: Research Character. Bottom: Production Charac-
ter.

to large quantities of high quality custom motion data, and in a
research setting, using publicly available motion capture databases
and a simple custom marker layout. For more results please see the
supplementary video.

7 EVALUATION
In this section we evaluate the design decisions and performance
of our approach. First, we compare our neural network structure
against several alternative neural network structures including those
that learn some kind of temporal prior such as CNNs and LSTM
networks. Secondly, using the ResNet structure, we compare our cor-
ruption function against simpler noise functions such as Gaussian
noise and Dropout. Finally we compare against commercial soft-
ware, joint-space denoising methods, and non data-driven methods.
For full details of the comparison please see Table 2. All comparisons
are performed on the Production character using a set of test data
(some of which is shown in Fig 1, Fig 7, and the supplementary
video) using a Nvidia GeForce GTX 970. We train all networks until
the training error converges or the validation error increases. To
ensure a fair comparison, we use the same number of layers in all
network structures and adjust the number of hidden units such
that all neural network structures have roughly the same memory
allowance. In Fig 13 we show the full distribution of errors of our
method when applied to the test data set.
Our comparison finds that although many methods achieve a

good level of accuracy, our simple ResNet structure achieves the
best results on the test data. We found that complex neural network

structures such as CNNs and LSTMs struggled to achieve the same
level of accuracy and additionally can have slower inference and
longer training time. For more discussion on why this might be
the case please see Section 8. We find that commercial software
has a low error on average but sometimes completely fails such as
when there are mislabeled markers (see Fig 12), and that joint-space
denoising methods also fail when the input contains too many errors
(see Fig 11). Finally, we find that our noise function achieved the
best results on the test set, indicating that the design of our custom
noise function provides an important contribution to this task.

8 DISCUSSION
Temporal Prior. The only temporal prior encoded in our system is

the Savitzky-Golay filtering descibed in Section 5 and used as a post-
process to smooth the results. This basic prior is enough to achieve
smoothness but in some situations we found it to be too strong
and noticed over-smoothing in cases such as hard impacts. For this
reason it makes sense to instead try to learn some form of temporal
prior from the training data using a neural network structure such as
a CNNor LSTM. Unfortunately, we found thesemore complex neural
networks harder to train, and theywere unable to achieve the desired
accuracy even with extensive parameter tweaking. Additionally, we
did not find the temporal prior learned by these methods to be
significantly stronger than the Savitzky-Golay filtering, and still
noticed fast, unnatural movements when markers quickly appeared
and disappeared, as well as over-smoothed movements on hard
impacts. For a visual comparison please see Fig 14.

After experimentation, we opted for the simplicity of a per-pose
framework using a feed-forward neural network and filtering as
a post-process. Firstly, this allowed us to train the neural network
much faster, allowing for a deeper and wider structure. Secondly,
using this type of network allowed us to use a simpler noise func-
tion which does not need to emulate the temporal aspect of motion
capture data errors. Finally, this structured allowed for greater per-
formance and simplicity in implementation at runtime as every pose
can be processed individually and in parallel.

On the other hand, we still feel strongly that the temporal aspect
of motion data should be useful for the task of fixing unclean motion
data and as such, it seems that finding a neural network structure
which encodes the temporal aspect of the data while still achieving
the desired accuracy would be an excellent goal for future research.

Limitations. Like all data-driven methods, our method requires
an excellent coverage in the data-space which can sometimes prove
a challenge. As this data must be cleaned ahead of time, our method
cannot be considered as automatic as existing non-data-driven meth-
ods. If some extreme poses are not covered in the training data, our
method can potentially produce inaccurate results when it encoun-
ters these poses at runtime, even when there are no errors in the
input data itself (see Fig 15). One way to counter this is to capture
a very large range of movement recording where the actor tries to
cover as many conceivable poses as possible in as short amount
of time as possible. In this way, we predict the required training
data can potentially be reduced from several hours to around 30-60
minutes.
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Fig. 11. Comparison with a selection of techniques which work in the space of the character joints. While these techniques work well in many cases they are
often unable to reconstruct the original motion when the input joints contain too many bad errors. From left to right: Raw uncleaned data, Self-Similarity
Analysis [Aristidou et al. 2018], Joint-Space LSTM Denoising [Mall et al. 2017]. Joint-Space CNN Denoising [Holden et al. 2015], Our method, Hand cleaned
data.

Technique Positional Error (mm) Rotational Error (deg) Inference (fps) Memory (mb) Training (hours)
ResNet (Our Method) 13.27 4.32 13000 75 18
FNN 15.28 4.98 13000 75 18
SNN 16.09 5.48 13000 75 18
ResCNN 25.06 7.66 3000 85 20
CNN 30.58 8.90 3000 85 20
SCNN 28.04 8.21 3000 85 20
GRU 19.22 7.66 350 75 30
LSTM 27.59 8.98 350 75 30
Commercial Software 12.94 4.33 - - -
Self-Similarity 51.89 4.75 15 - -
Joint-Space CNN 19.70 5.57 3000 85 20
Joint-Space LSTM 48.96 35.06 350 75 30
Corrupt (Our Method) 13.27 4.32 - - -
Gaussian Noise 36.37 10.26 - - -
Uniform Noise 37.20 10.00 - - -
Dropout 108.64 14.84 - - -

Table 2. Comparison of different techniques applied to the test data. We measure the mean positional and rotational error for all joints across all frames in the
test set, along with the inference time, training time, and memory usage. The techniques compared from top to bottom: Our Method (ResNet), Standard
Feed-Forward Neural Network with ReLU activation function (FNN), Self-Normalizing Neural Network [Klambauer et al. 2017] (SNN), Residual Convolution
Neural Network (ResCNN), Convolutional Neural Network (CNN), Self-Normalizing Convolutional Neural Network (SCNN), Encoder-Recurrent-Decoder
GRU Network [Chung et al. 2014] (GRU), Encoder-Recurrent-Decoder LSTM Network [Fragkiadaki et al. 2015] (LSTM), Vicon Automatic Gap Filling [Vicon
2018] (Commercial Software). Self-Similarity Analysis [Aristidou et al. 2018] (Self-Similarity). Joint-Space Convolution Neural Network [Holden et al. 2015]
(Joint-Space CNN), Joint-Space LSTM Network [Mall et al. 2017] (Joint-Space LSTM), Noise functions compared from top to bottom: Our Method (Corrupt),
Simple Gaussian noise with a standard deviation of 0.1 applied to the input data (Gaussian Noise), Uniform noise with a range of 0.1 applied to the input data
(Uniform Noise), Dropout [Srivastava et al. 2014] applied at each layer with a rate of 0.25 (Dropout).

Although our method often produces results which are visually
hard to distinguish fromhand cleaned data, it tends to have a residual
error of a few millimeters when compared to the ground truth. In
cases which require very precise data this could still be considered
too large and can sometimes manifest in undesirable ways such as
small amounts of visible foot sliding.
One common limitation to data-driven methods is that they are

often extremely brittle to changes in the data set-up such as using
different marker layouts or skeleton structures. A positive aspect of
our algorithm is that it is relatively easy to change the marker layout:
all it requires is a new set of marker configurations and for the
network to be re-trained. As our algorithm drastically reduces the
cost-per-marker of optical motion capture it would be interesting

to see it used in conjunction with very large, dense marker sets
covering the whole body such as in Park et al. [2006]. Regarding
changes in the skeleton structure, our algorithm performs less well,
and requires either retargeting all of the old data to the new skeleton
or, at worst, collecting a whole new set of training data using the
new skeleton.
Another limitation of our method is that our system’s perfor-

mance relies on the rigid body fitting process to be completed accu-
rately, which in turn relies on the outlier removal process to perform
well. If either of these stages fail, our method can sometimes pro-
duce worse than expected results (see Fig 16). One technique we
discovered that helps this issue, is to add small perturbations to
the transformations described by F during training. This ensures
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Fig. 12. Commercial software [Vicon 2018] has powerful tools for auto-
matically filling gaps (Top) but tends to fail when encountering mislabeled
markers (Bottom). From left to right: Raw uncleaned data, Automatic gap
filling performed by Commercial Software, Our method, Hand cleaned data.

Fig. 13. The distribution of errors in the test data when using our approach.
We find that roughly 90% of errors are less than 20 mm or 10 degrees in
magnitude, and roughly 99.9% of errors are less than 60 mm or 40 degrees
in magnitude.

the neural network generalizes well, even in situations where F is
calculated inaccurately.

9 CONCLUSION
In conclusion, we present a data-driven technique aimed at replac-
ing the solving part of the optical motion capture pipeline using a
denoising neural network. Unlike existing techniques, our method
is extremely robust to a large number of errors in the input data
which removes the need for manual cleaning of motion capture data,
reducing the burden of hand processing optical motion capture and
greatly improving the potential throughput that can be achieved by
an optical motion capture studio.
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