

Neural Network Ambient Occlusion

Daniel Holden*, Jun Saito†, Taku Komura*

*The University of Edinburgh, †Method Studios

Background

SA2016.SIGGRAPH.ORG

WHAT IS AMBIENT OCCLUSION?

- Approximation of soft shadows produced by global illumination.
- Calculated via tracing rays from each point into the surrounding world.

SCREEN SPACE AMBIENT OCCLUSION?

- Treat camera depth as heightmap representing the geometry.
- Calculate the occlusion taking into account that this is an approximation.

SCREEN SPACE AMBIENT OCCLUSION

SSAO [Mittring 2007]

SSAO+ [McNaughton 2008] HBAO [Bavoli et al. 2008]

GTAO [Jimenez et al. 2016]

SAO [McGuire et al. 2011]

Learn a good Screen Space Ambient Occlusion function

SA2016.SIGGRAPH.ORG

WHY MACHINE LEARNING?

 Machine Learning is good for things we don't know how to model.

• What about things we do know how to model?

WHY MACHINE LEARNING?

Memorisation

- Remembers parts of training data
- Potential to be faster

Optimisation

- Trained with respect to actual data
- Potential to be more accurate

Methodology

SA2016.SIGGRAPH.ORG

TRAINING DATA

- Open Source First
 Person Shooter Black
 Mesa
- Extract scenes and render offline using *Mental Ray*

TRAINING DATA

AO

Depth

Normals

- Take image patches in view space the size of AO radius.
- Compute the difference from the central pixel.
- Scale by the distance to the AO radius.

Overview: Simple four layer Neural Network

SA2016.SIGGRAPH.ORG

Input Layer: Performs pre-processing from previous slides

SA2016.SIGGRAPH.ORG

First Layer: Acts as convolution producing 4 values from patch

SA2016.SIGGRAPH.ORG

Other Layers: Normal layers acting on 4 hidden units each

SA2016.SIGGRAPH.ORG

- Implemented in *Theano*
- Trained with Adam
- Uses Parametric Rectified Linear Units
- *Dropout* of 0.5
- ~500000 data points
- ~10 hours training on NVIDIA GTX 660

Runtime

SA2016.SIGGRAPH.ORG

- Neural Network is translated into shader
- Made easy by several design decisions:
 - No intermediate storage runs in single pass
 - Only 4 hidden units can use vectors ops
 - First layer is the only complicated layer
 - ~100 lines of code

- Acts like a convolution with network weights as *filter* images.
- Multiplied by input patch and summed.
- This *integration* can be approximated by sub-sampling.

SUB-SAMPLING

- Mulitply just a few input pixels by filter.
- Rescale result using sub-sample ratio.
- Adjust sampling locations spatially across screen.

SUB-SAMPLING

Random

- Seeded
- Many Samples
- Bad for Cache
- Unbiased
- [SSAO,SSAO+]

Stratified

- Jittered
- Many Samples Few Samples
- Biased

Star

- Rotated
- Good for Cache Good for Cache
 - Biased
 - [HBAO]

Spiral

- Rotated/Offset
- Few Samples
- Good for Cache
- Unbiased
- [SAO]

Results

SA2016.SIGGRAPH.ORG

GROUND TRUTH

SA2016.SIGGRAPH.ORG

Too Dark

Too Dark

SA2016.SIGGRAPH.ORG

GROUND TRUTH

SA2016.SIGGRAPH.ORG

Too Dark

Too Light

GROUND TRUTH

SA2016.SIGGRAPH.ORG

Better

SA2016.SIGGRAPH.ORG

Incorrect Shadows

Generally "Washed Out"

SA2016.SIGGRAPH.ORG

Algorithm	Sample Count	Runtime (ms)	Error (mse)
SSAO	4	1.20	1.765
SSAO	8	1.43	1.558
SSAO	16	14.71	1.539
SSAO+	4	1.16	0.974
SSAO+	8	1.29	0.818
SSAO+	16	14.46	0.811
HBAO	16	3.53	0.965
HBAO	32	4.83	0.709
HBAO	64	8.50	0.666
NNAO	64	4.17	0.510
NNAO	128	4.81	0.486
NNAO	256	6.87	0.477

Algorithm	Sample Count	Runtime (ms)	Error (mse)
SSAO	4	1.20	1.765
SSAO	8	1.43	1.558
SSAO	16	14.71	1.539
SSAO+	4	1.16	0.974
SSAO+	8	1.29	0.818
SSAO+	16	14.46	0.811
HBAO	16	3.53	0.965
HBAO	32	4.83	0.709
HBAO	64	8.50	0.666
NNAO	64	4.17	0.510
NNAO	128	4.81	0.486
NNAO	256	6.87	0.477

HBAO [32 samples] [4ms] NNAO [128 samples] [4ms]

Neural Network Ambient Occlusion

Daniel Holden

Jun Saito

Taku Komura

University of Edinburgh

Method Studios

University of Edinburgh

SA2016.SIGGRAPH.ORG

FUTURE WORK

- Train on GBuffer with detailed normals
- Apply to other screen space effects
 - Reflections
 - Subsurface Scattering
 - Indirect Illumination

Deep Shading [Nalbach et al. 2016]

- We learn a Screen Space Ambient Occlusion function using a Neural Network.
- Designed to be drop in replacement to existing SSAO shaders.
- Faster and more accurate in many cases than previous methods.

