Icon ASCII : A Love Letter


Icon My Neural Network isn't working! What should I do?


Icon Phase-Functioned Neural Networks for Character Control


Icon 17 Line Markov Chain


Icon 14 Character Random Number Generator


Icon Simple Two Joint IK


Icon Generating Icons with Pixel Sorting


Icon Neural Network Ambient Occlusion


Icon Three Short Stories about the East Coast Main Line


Icon The New Alphabet


Icon "The Color Munifni Exists"


Icon A Deep Learning Framework For Character Motion Synthesis and Editing


Icon The Halting Problem and The Moral Arbitrator


Icon The Witness


Icon Four Seasons Crisp Omelette


Icon At the Bottom of the Elevator


Icon Tracing Functions in Python


Icon Still Things and Moving Things


Icon water.cpp


Icon Making Poetry in Piet


Icon Learning Motion Manifolds with Convolutional Autoencoders


Icon Learning an Inverse Rig Mapping for Character Animation


Icon Infinity Doesn't Exist


Icon Polyconf


Icon Raleigh


Icon The Skagerrak


Icon Printing a Stack Trace with MinGW


Icon The Border Pines


Icon You could have invented Parser Combinators


Icon Ready for the Fight


Icon Earthbound


Icon Turing Drawings


Icon Lost Child Announcement


Icon Shelter


Icon Data Science, how hard can it be?


Icon Denki Furo


Icon In Defence of the Unitype


Icon Maya Velocity Node


Icon Sandy Denny


Icon What type of Machine is the C Preprocessor?


Icon Which AI is more human?


Icon Gone Home


Icon Thoughts on Japan


Icon Can Computers Think?


Icon Counting Sheep & Infinity


Icon How Nature Builds Computers


Icon Painkillers


Icon Correct Box Sphere Intersection


Icon Avoiding Shader Conditionals


Icon Writing Portable OpenGL


Icon The Only Cable Car in Ireland


Icon Is the C Preprocessor Turing Complete?


Icon The aesthetics of code


Icon Issues with SDL on iOS and Android


Icon How I learned to stop worrying and love statistics


Icon PyMark


Icon AutoC Tools


Icon Scripting xNormal with Python


Icon Six Myths About Ray Tracing


Icon The Web Giants Will Fall


Icon PyAutoC


Icon The Pirate Song


Icon Dear Esther


Icon Unsharp Anti Aliasing


Icon The First Boy


Icon Parallel programming isn't hard, optimisation is.


Icon Skyrim


Icon Recognizing a language is solving a problem


Icon Could an animal learn to program?




Icon Pure Depth SSAO


Icon Synchronized in Python


Icon 3d Printing


Icon Real Time Graphics is Virtual Reality


Icon Painting Style Renderer


Icon A very hard problem


Icon Indie Development vs Modding


Icon Corange


Icon 3ds Max PLY Exporter


Icon A Case for the Technical Artist


Icon Enums


Icon Scorpions have won evolution


Icon Dirt and Ashes


Icon Lazy Python


Icon Subdivision Modelling


Icon The Owl


Icon Mouse Traps


Icon Updated Art Reel


Icon Tech Reel


Icon Graphics Aren't the Enemy


Icon On Being A Games Artist


Icon The Bluebird


Icon Everything2


Icon Duck Engine


Icon Boarding Preview


Icon Sailing Preview


Icon Exodus Village Flyover


Icon Art Reel




Icon One Cat Just Leads To Another

A Deep Learning Framework For Character Motion Synthesis and Editing

Created on May 16, 2016, 11:23 a.m.

This year at SIGGRAPH I am presenting A Deep Learning Framework For Character Motion Synthesis and Editing. This paper covers a broad range of techniques you can use to apply deep learning to character animation. This includes motion synthesis - generating motion from some parameterization such as the trajectory, as well as motion editing - adjusting the motion in a natural way to achieve the desired goal. It also includes an application of style transfer.


Abstract: We present a framework to synthesize character movements based on high level parameters, such that the produced movements respect the manifold of human motion, trained on a large motion capture dataset. The learned motion manifold, which is represented by the hidden units of a convolutional autoencoder, represents motion data in sparse components which can be combined to produce a wide range of complex movements. To map from high level parameters to the motion manifold, we stack a deep feedforward neural network on top of the trained autoencoder. This network is trained to produce realistic motion sequences from parameters such as a curve over the terrain that the character should follow, or a target location for punching and kicking. The feedforward control network and the motion manifold are trained independently, allowing the user to easily switch between feedforward networks according to the desired interface, without re-training the motion manifold. Once motion is generated it can be edited by performing optimization in the space of the motion manifold. This allows for imposing kinematic constraints, or transforming the style of the motion, while ensuring the edited motion remains natural. As a result, the system can produce smooth, high quality motion sequences without any manual pre-processing of the training data.

github twitter rss