Icon 17 Line Markov Chain

 

Icon 14 Character Random Number Generator

 

Icon Simple Two Joint IK

 

Icon Generating Icons with Pixel Sorting

 

Icon Neural Network Ambient Occlusion

 

Icon Three Short Stories about the East Coast Main Line

 

Icon The New Alphabet

 

Icon "The Color Munifni Exists"

 

Icon A Deep Learning Framework For Character Motion Synthesis and Editing

 

Icon The Halting Problem and The Moral Arbitrator

 

Icon The Witness

 

Icon Four Seasons Crisp Omelette

 

Icon At the Bottom of the Elevator

 

Icon Tracing Functions in Python

 

Icon Still Things and Moving Things

 

Icon water.cpp

 

Icon Making Poetry in Piet

 

Icon Learning Motion Manifolds with Convolutional Autoencoders

 

Icon Learning an Inverse Rig Mapping for Character Animation

 

Icon Infinity Doesn't Exist

 

Icon Polyconf

 

Icon Raleigh

 

Icon The Skagerrak

 

Icon Printing a Stack Trace with MinGW

 

Icon The Border Pines

 

Icon You could have invented Parser Combinators

 

Icon Ready for the Fight

 

Icon Earthbound

 

Icon Turing Drawings

 

Icon Lost Child Announcement

 

Icon Shelter

 

Icon Data Science, how hard can it be?

 

Icon Denki Furo

 

Icon In Defence of the Unitype

 

Icon Maya Velocity Node

 

Icon Sandy Denny

 

Icon What type of Machine is the C Preprocessor?

 

Icon Which AI is more human?

 

Icon Gone Home

 

Icon Thoughts on Japan

 

Icon Can Computers Think?

 

Icon Counting Sheep & Infinity

 

Icon How Nature Builds Computers

 

Icon Painkillers

 

Icon Correct Box Sphere Intersection

 

Icon Avoiding Shader Conditionals

 

Icon Writing Portable OpenGL

 

Icon The Only Cable Car in Ireland

 

Icon Is the C Preprocessor Turing Complete?

 

Icon The aesthetics of code

 

Icon Issues with SDL on iOS and Android

 

Icon How I learned to stop worrying and love statistics

 

Icon PyMark

 

Icon AutoC Tools

 

Icon Scripting xNormal with Python

 

Icon Six Myths About Ray Tracing

 

Icon The Web Giants Will Fall

 

Icon PyAutoC

 

Icon The Pirate Song

 

Icon Dear Esther

 

Icon Unsharp Anti Aliasing

 

Icon The First Boy

 

Icon Parallel programming isn't hard, optimisation is.

 

Icon Skyrim

 

Icon Recognizing a language is solving a problem

 

Icon Could an animal learn to program?

 

Icon RAGE

 

Icon Pure Depth SSAO

 

Icon Synchronized in Python

 

Icon 3d Printing

 

Icon Real Time Graphics is Virtual Reality

 

Icon Painting Style Renderer

 

Icon A very hard problem

 

Icon Indie Development vs Modding

 

Icon Corange

 

Icon 3ds Max PLY Exporter

 

Icon A Case for the Technical Artist

 

Icon Enums

 

Icon Scorpions have won evolution

 

Icon Dirt and Ashes

 

Icon Lazy Python

 

Icon Subdivision Modelling

 

Icon The Owl

 

Icon Mouse Traps

 

Icon Updated Art Reel

 

Icon Tech Reel

 

Icon Graphics Aren't the Enemy

 

Icon On Being A Games Artist

 

Icon The Bluebird

 

Icon Everything2

 

Icon Duck Engine

 

Icon Boarding Preview

 

Icon Sailing Preview

 

Icon Exodus Village Flyover

 

Icon Art Reel

 

Icon LOL I DREW THIS DRAGON

 

Icon One Cat Just Leads To Another

Publications


publication nnao

Neural Network Ambient Occlusion

ACM SIGGRAPH Asia '16 Technical Briefs

Daniel Holden, Jun Saito, Taku Komura

WebpagePaperVideoSlidesShader & FiltersCode & Data

This short paper uses Machine Learning to produce ambient occlusion from the screen space depth and normals. A large database of ambient occlusion is rendered offline and a neural network trained to produce ambient occlusion from a small patch of screen space information. This network is then converted into a fast runtime shader that runs in a single pass and can be used as a drop-in replacement to other screen space ambient occlusion techniques.


publication synthesis

A Deep Learning Framework For Character Motion Synthesis and Editing

ACM SIGGRAPH '16

Daniel Holden, Jun Saito, Taku Komura

WebpagePaperVideoSlidesCodeData

In this work we show how to apply deep learning techniques to character animation data.

We present a number of applications, including very fast motion synthesis, natural motion editing, and style transfer - and describe the potential for future applications and work. Unlike previous methods our technique requires no manual preprocessing of the data, instead learning as much as possible unsupervised.


publication manifold

Learning Motion Manifolds with Convolutional Autoencoders

ACM SIGGRAPH Asia '15 Technical Briefs

Daniel Holden, Jun Saito, Taku Komura, Thomas Joyce

WebpagePaperVideoSlides

In this work we show how a motion manifold can be constructed using deep convolutional autoencoders.

Once constructed the motion manifold has many uses in animation research and machine learning. It can be used to fix corrupted motion data, fill in missing motion data, and naturally interpolate or take the distance between different motions.


publication rigmapping

Learning an Inverse Rig Mapping for Character Animation

ACM SIGGRAPH/Eurographics SCA '15

Daniel Holden, Jun Saito, Taku Komura

WebpagePaperVideoSlides

In this work we present a technique for mapping skeletal joint points, such as those found via motion capture onto rig controls, the controls used by animators in keyframed animation environments.

This technique performs the mapping in real-time allowing for the seamless integration of artistic tools that work in the space of the joint positions to be used by key-framing artists - a big step torward the application of many existing animation tools for character animation.

github twitter rss