Icon 17 Line Markov Chain

 

Icon 14 Character Random Number Generator

 

Icon Simple Two Joint IK

 

Icon Generating Icons with Pixel Sorting

 

Icon Neural Network Ambient Occlusion

 

Icon Three Short Stories about the East Coast Main Line

 

Icon The New Alphabet

 

Icon "The Color Munifni Exists"

 

Icon A Deep Learning Framework For Character Motion Synthesis and Editing

 

Icon The Halting Problem and The Moral Arbitrator

 

Icon The Witness

 

Icon Four Seasons Crisp Omelette

 

Icon At the Bottom of the Elevator

 

Icon Tracing Functions in Python

 

Icon Still Things and Moving Things

 

Icon water.cpp

 

Icon Making Poetry in Piet

 

Icon Learning Motion Manifolds with Convolutional Autoencoders

 

Icon Learning an Inverse Rig Mapping for Character Animation

 

Icon Infinity Doesn't Exist

 

Icon Polyconf

 

Icon Raleigh

 

Icon The Skagerrak

 

Icon Printing a Stack Trace with MinGW

 

Icon The Border Pines

 

Icon You could have invented Parser Combinators

 

Icon Ready for the Fight

 

Icon Earthbound

 

Icon Turing Drawings

 

Icon Lost Child Announcement

 

Icon Shelter

 

Icon Data Science, how hard can it be?

 

Icon Denki Furo

 

Icon In Defence of the Unitype

 

Icon Maya Velocity Node

 

Icon Sandy Denny

 

Icon What type of Machine is the C Preprocessor?

 

Icon Which AI is more human?

 

Icon Gone Home

 

Icon Thoughts on Japan

 

Icon Can Computers Think?

 

Icon Counting Sheep & Infinity

 

Icon How Nature Builds Computers

 

Icon Painkillers

 

Icon Correct Box Sphere Intersection

 

Icon Avoiding Shader Conditionals

 

Icon Writing Portable OpenGL

 

Icon The Only Cable Car in Ireland

 

Icon Is the C Preprocessor Turing Complete?

 

Icon The aesthetics of code

 

Icon Issues with SDL on iOS and Android

 

Icon How I learned to stop worrying and love statistics

 

Icon PyMark

 

Icon AutoC Tools

 

Icon Scripting xNormal with Python

 

Icon Six Myths About Ray Tracing

 

Icon The Web Giants Will Fall

 

Icon PyAutoC

 

Icon The Pirate Song

 

Icon Dear Esther

 

Icon Unsharp Anti Aliasing

 

Icon The First Boy

 

Icon Parallel programming isn't hard, optimisation is.

 

Icon Skyrim

 

Icon Recognizing a language is solving a problem

 

Icon Could an animal learn to program?

 

Icon RAGE

 

Icon Pure Depth SSAO

 

Icon Synchronized in Python

 

Icon 3d Printing

 

Icon Real Time Graphics is Virtual Reality

 

Icon Painting Style Renderer

 

Icon A very hard problem

 

Icon Indie Development vs Modding

 

Icon Corange

 

Icon 3ds Max PLY Exporter

 

Icon A Case for the Technical Artist

 

Icon Enums

 

Icon Scorpions have won evolution

 

Icon Dirt and Ashes

 

Icon Lazy Python

 

Icon Subdivision Modelling

 

Icon The Owl

 

Icon Mouse Traps

 

Icon Updated Art Reel

 

Icon Tech Reel

 

Icon Graphics Aren't the Enemy

 

Icon On Being A Games Artist

 

Icon The Bluebird

 

Icon Everything2

 

Icon Duck Engine

 

Icon Boarding Preview

 

Icon Sailing Preview

 

Icon Exodus Village Flyover

 

Icon Art Reel

 

Icon LOL I DREW THIS DRAGON

 

Icon One Cat Just Leads To Another

Counting Sheep & Infinity

Created on May 5, 2013, 7:10 p.m.

The Count from sesame street was my first introduction into the magical world of counting. By primary school I thought I had it all covered. So when I had a mathematics course at university titled simply "counting" I was somewhat surprised. I was hoping the exam would be as easy as the course title implied. Or even better - that it would be run by a Muppet.

Turns out counting is actually pretty fascinating. One example is this mathematical fable which explains what counting really is. It goes something like this:


Back before The Romans, before numbers, and even before counting, nomadic shepherds roamed the mountains and plains. In the winter they would let their sheep out to graze. In the summer they would gather their flock together for shearing and milking. In the spring, again they would gather their flock for lambing.

But the shepherds were faced with a problem. Because numbers and counting had not been invented they had no way of knowing when they had collected all of their sheep together to be sheared. They could not find out if some had gone missing or been left behind. With no way to monitor their flock, wolf attacks and encounters with other herds were incredibly troublesome.

Then one shepherd came up with a brilliant idea. In the autumn he collected many rocks and stones into a large pile. Come winter, as he let his sheep out to graze, he paired each one up with a stone. Each stone he moved over onto a new pile. Once all his sheep were out in the field he discarded any remaining stones. His new pile then had exactly the same number of stones as in his herd.

On rolls the summer. It was time to bring the sheep in. As he rounded up each sheep he paired it with one of the stones from his pile - moving it onto yet another pile. If he managed to pair each stone up with exactly one sheep he could be sure he had the correct number. If he was left with stones he knew that some sheep were missing, and if he was left with extra sheep, somehow had gained new members to the flock.

His success spread to the rest of the shepherds. Soon they adapted his system, making improvements and modifications. Giving names to small sets of stones, or using big stones to represent many small ones. Counting had been invented.


To this day this is still how we understand counting. The root idea is the same. That you can find out the size of some set, my comparing it to another set of a known size.

While useful for counting sheep it also lets us count the size of some other weird things. One example is infinite sets. For example...

Consider all of the positive integers: 0, 1, 2, 3, 4, 5, 6, 7, 8 ...

Consider all the even positive integers: 0, 2, 4, 6, 8, ...

There are an infinite number of both of these things, but are the sets the same size?

Under initial examination one might say "no", because, well - in the second set half the numbers are missing, right?

But what if we consider the same question using our previous rule about counting. If we can find some one-to-one pairing like the stones and the sheep then we know they are the same size. Thinking about it this pairing is easy we just multiply each number in the first set by two. Therefore these two infinite sets are the same size.

But there are some infinite sets which are not the same size. For example the positive integers are not the same size as every number including decimals (the Real numbers). There is no mapping between each decimal number and each positive integer. Although the proof is not simple. It is clear that there is no obvious pairing - and it should be somewhat intuitive that there cannot be. For example there are an infinite number of decimals just between 0 and 1. In fact there are an infinite number of decimals between 0 and 0.0001. There are so many decimals that it is a struggle to comprehend.

So different sizes of infinity do exist. We call this cardinality. Even cooler is that it isn't just infinite sets of numbers that can be compared in this way. There are an infinite number of possible texts in a language, or computer programs that could be written, or musical compositions to be composed. We can even compare the sizes of these too! Finding new and interesting relationships between them. And The Count never covered that.

github twitter rss