Icon Unrolling Rotations

 

Icon Animation Blend Spaces without Triangulation

 

Icon Quaternion Weighted Average

 

Icon BVHView

 

Icon Dead Blending Node in Unreal Engine

 

Icon Propagating Velocities through Animation Systems

 

Icon Cubic Interpolation of Quaternions

 

Icon Dead Blending

 

Icon Perfect Tracking with Springs

 

Icon Creating Looping Animations from Motion Capture

 

Icon My Favourite Things

 

Icon Inertialization Transition Cost

 

Icon Scalar Velocity

 

Icon Tags, Ranges and Masks

 

Icon Fitting Code Driven Displacement

 

Icon atoi and Trillions of Whales

 

Icon SuperTrack: Motion Tracking for Physically Simulated Characters using Supervised Learning

 

Icon Joint Limits

 

Icon Code vs Data Driven Displacement

 

Icon Exponential Map, Angle Axis, and Angular Velocity

 

Icon Encoding Events for Neural Networks

 

Icon Visualizing Rotation Spaces

 

Icon Spring-It-On: The Game Developer's Spring-Roll-Call

 

Icon Interviewing Advice from the Other Side of the Table

 

Icon Saguaro

 

Icon Learned Motion Matching

 

Icon Why Can't I Reproduce Their Results?

 

Icon Latinendian vs Arabendian

 

Icon Machine Learning, Kolmogorov Complexity, and Squishy Bunnies

 

Icon Subspace Neural Physics: Fast Data-Driven Interactive Simulation

 

Icon Software for Rent

 

Icon Naraleian Caterpillars

 

Icon The Scientific Method is a Virus

 

Icon Local Minima, Saddle Points, and Plateaus

 

Icon Robust Solving of Optical Motion Capture Data by Denoising

 

Icon Simple Concurrency in Python

 

Icon The Software Thief

 

Icon ASCII : A Love Letter

 

Icon My Neural Network isn't working! What should I do?

 

Icon Phase-Functioned Neural Networks for Character Control

 

Icon 17 Line Markov Chain

 

Icon 14 Character Random Number Generator

 

Icon Simple Two Joint IK

 

Icon Generating Icons with Pixel Sorting

 

Icon Neural Network Ambient Occlusion

 

Icon Three Short Stories about the East Coast Main Line

 

Icon The New Alphabet

 

Icon "The Color Munifni Exists"

 

Icon A Deep Learning Framework For Character Motion Synthesis and Editing

 

Icon The Halting Problem and The Moral Arbitrator

 

Icon The Witness

 

Icon Four Seasons Crisp Omelette

 

Icon At the Bottom of the Elevator

 

Icon Tracing Functions in Python

 

Icon Still Things and Moving Things

 

Icon water.cpp

 

Icon Making Poetry in Piet

 

Icon Learning Motion Manifolds with Convolutional Autoencoders

 

Icon Learning an Inverse Rig Mapping for Character Animation

 

Icon Infinity Doesn't Exist

 

Icon Polyconf

 

Icon Raleigh

 

Icon The Skagerrak

 

Icon Printing a Stack Trace with MinGW

 

Icon The Border Pines

 

Icon You could have invented Parser Combinators

 

Icon Ready for the Fight

 

Icon Earthbound

 

Icon Turing Drawings

 

Icon Lost Child Announcement

 

Icon Shelter

 

Icon Data Science, how hard can it be?

 

Icon Denki Furo

 

Icon In Defence of the Unitype

 

Icon Maya Velocity Node

 

Icon Sandy Denny

 

Icon What type of Machine is the C Preprocessor?

 

Icon Which AI is more human?

 

Icon Gone Home

 

Icon Thoughts on Japan

 

Icon Can Computers Think?

 

Icon Counting Sheep & Infinity

 

Icon How Nature Builds Computers

 

Icon Painkillers

 

Icon Correct Box Sphere Intersection

 

Icon Avoiding Shader Conditionals

 

Icon Writing Portable OpenGL

 

Icon The Only Cable Car in Ireland

 

Icon Is the C Preprocessor Turing Complete?

 

Icon The aesthetics of code

 

Icon Issues with SDL on iOS and Android

 

Icon How I learned to stop worrying and love statistics

 

Icon PyMark

 

Icon AutoC Tools

 

Icon Scripting xNormal with Python

 

Icon Six Myths About Ray Tracing

 

Icon The Web Giants Will Fall

 

Icon PyAutoC

 

Icon The Pirate Song

 

Icon Dear Esther

 

Icon Unsharp Anti Aliasing

 

Icon The First Boy

 

Icon Parallel programming isn't hard, optimisation is.

 

Icon Skyrim

 

Icon Recognizing a language is solving a problem

 

Icon Could an animal learn to program?

 

Icon RAGE

 

Icon Pure Depth SSAO

 

Icon Synchronized in Python

 

Icon 3d Printing

 

Icon Real Time Graphics is Virtual Reality

 

Icon Painting Style Renderer

 

Icon A very hard problem

 

Icon Indie Development vs Modding

 

Icon Corange

 

Icon 3ds Max PLY Exporter

 

Icon A Case for the Technical Artist

 

Icon Enums

 

Icon Scorpions have won evolution

 

Icon Dirt and Ashes

 

Icon Lazy Python

 

Icon Subdivision Modelling

 

Icon The Owl

 

Icon Mouse Traps

 

Icon Updated Art Reel

 

Icon Tech Reel

 

Icon Graphics Aren't the Enemy

 

Icon On Being A Games Artist

 

Icon The Bluebird

 

Icon Everything2

 

Icon Duck Engine

 

Icon Boarding Preview

 

Icon Sailing Preview

 

Icon Exodus Village Flyover

 

Icon Art Reel

 

Icon LOL I DREW THIS DRAGON

 

Icon One Cat Just Leads To Another

Visualizing Rotation Spaces

Created on June 13, 2021, 3:54 p.m.

There are many different ways we can represent the rotation of an object in 3D space. The most classic of these is the Rotation Matrix, but there are others you might have come across such as Euler Angles, Quaternions, and the Exponential Map.

It can be hard to get a deeper, intuitive understanding for some of these other representations, but one way to do so is to try and think about the space they encode, and the rotations given by the points in those spaces.

I thought I would share how I visualize in my head each of these spaces. To do so I tried to encode each valid rotation in the space as a differently colored point and render them like a volume. The mapping is not entirely perfect - nearby rotations are given similar colors, but some different rotations have the same color (albeit a different gradient). Nonetheless, I think it overall gives a good starting point for how to picture these spaces and work with them.

If you want to see exactly how I made these visualizations be sure to check out the source code at the bottom of the page.


Euler Angles

Euler angles are sets of three angles each of which represents a rotation around a different axis. These are then combined together to produce a final rotation by applying one rotation after the other. We can therefore imagine the space of Euler angles as being a 3D space, where each point represents a unique set of three Euler angles, encoding a different rotation.

euler_angles_diagram

Right away we can see some interesting things about this 3D space - first, it repeats itself periodically every \( 2\pi \) - as, no matter what the axis, rotating by \( 2\pi + x \) is the same as just rotating by \( x \).

This periodic repetition isn't like a \( \text{mod} \) function with a sudden discontinuity - instead it's smooth like a \( \sin \) function. If we look at values less than zero we can see this same periodic repetition into the negative space too, as rotating by \( -x \) is the same as \( 2\pi - x \).

A weird thing about this space is that if you look very closely there are duplicate regions inside this 3D cube of rotations. Depending on the axes we choose and the order we apply our rotations there can sometimes be multiple ways to get to the same final rotation. Similarly, if we switch the order of rotations we get a completely different space.

For some extreme rotations we can also face the issue of gimbal lock, where a specific combination of two rotations can make the third unable to do anything, rendering a whole region of the space the same.

You can interpolate in this space, but the result is not going to be the shortest path between between the two rotations, and depending on the way the angles are combined it can result in all sorts of weird twists and swings as we pass through different regions of the space.

There are also no "holes" in this space - every point within it represents a valid rotation, from the origin outward to infinity. We can use this to represent rotations which "wrap around" multiple times by using these larger repetitions. This can be both good and bad depending on what our application is - we may want to distinguish between rotations of \( 2\pi \) and \( 4\pi \) or we may prefer they were always both encoded by the same value.

If we look at an individual axis we might think this space acts like normal angles do, looping around every \( 2\pi \), but expand this to three dimensions and while we can represent any rotation in 3D space we want, generally we can't do so in a consistent or regular way and inside this cube we have weird deformations that change based on the axes of rotation and the order of application.


Quaternions

Quaternions are four dimensional numbers that can be used to represent rotations. These four numbers are generally "normalized", meaning the total length of the vector is one. We can therefore say that normalized quaternions lie on the surface of a four dimensional hyper-sphere with radius one. While we can't easily visualize a four dimensional hyper-sphere we can easily visualize a three dimensional sphere by simply forgetting about one of the dimensions (we can assume it is always zero).

I like to visualize the \( w \) dimension on the vertical axis, and the \( x \) and \( y \) dimensions on the other two axes, meaning that the identity quaternion \( [1\ 0\ 0\ 0] \) is encoded by the point right at the north pole of the sphere:

quaternions_diagram

As we move down the surface of the sphere from the top to bottom we start to represent rotations of greater amounts up until we get to the equator, which represents rotations of \( \pi \) (or \( -\pi \)) around each dimension. If we keep moving down we start to represent rotations of over \( \pi \), until we get back down to the south-pole, which encodes a full rotation of \( 2\pi \).

This gives us our first interesting insight into quaternions - the south-pole encodes the same rotation as the north-pole - the identity rotation. In fact, the whole of the southern hemisphere encodes rotations which are also represented in the northern hemisphere and we can switch between these two simply by negating the quaternion. While the north and south hemispheres encode the same rotation in absolute terms, we usually say the southern hemisphere represents rotations "going the long way round" - e.g. rotating by \( \tfrac{3}{2}\pi \) instead of \( -\tfrac{1}{2}\pi \). This fact that quaternions can have two different encodings for the same rotation is the so called "double cover" property of the quaternions.

This may sound odd at first but it isn't any different to the Euler angles in some respect - these also have multiple "covers" of the space of rotations - in fact the Euler angles have infinite "covers" - there is another one each time the space repeats. And when you look at it this way it may even seem odd that the quaternions only have two covers - they can only represent rotations between \( -2\pi \) and \( +2\pi \) because they are limited to this finite surface on the hyper-sphere.

The normalized quaternions have a big "hole" in the middle of the sphere (and outside the sphere) of values that don't (by default) represent a valid rotation. And even if we consider un-normalized quaternions as valid rotations (we say they can just be normalized), there is still the point right at the origin which cannot represent a valid rotation.

If we want to interpolate two quaternions there are two ways to do it - we can linearly interpolate and then re-normalize to get back onto the surface of the sphere, or we can interpolate along the surface of the sphere (the so called slerp function). Both can work fine as long as we are careful when we interpolate rotations from two different hemispheres of the sphere as we might find we end up "going the long way around" by mistake.

I like to think of the quaternion space of rotations in terms of its two hemispheres - with all rotations at the top representing "short" (less than \( \pi \) in magnitude) rotations, and all those at the bottom going "the long way round". When we multiply quaternions we are essentially traveling around the surface of this sphere as if flying a plane around the globe. No matter how many rotations we combine we never end up off the surface, but we can quickly lose track of (or meaning in) how many times we may have looped around and in which hemisphere we are now located.


Exponential Map

The exponential map is an encoding of a rotation where we take the axis of rotation, and scale it by the angle of rotation around that axis, divided by two. This produces a 3D vector space where the origin encodes the identity rotation, and further rotations along each axis are encoded by vectors extending in those directions.

exponential_map_diagram

Unlike the Euler angle space, which is shaped like a cube, the exponential map produces a space like a kind of solid sphere, with "shells" of identity rotation every \( \pi \) distance from the origin and additional "layers" which encode the same set of rotations on top.

Both linear interpolation and spherical interpolation can work in this space, and as long as you don't interpolate between "layers" by mistake, they both work pretty nicely. Like the Euler angles, this space provides infinite "covers", and as we move further away from the origin we can represent multiple "wrap arounds" of rotation up to infinity. There are also no undefined points in the space - every point represents a valid rotation and the identity rotation is neatly at zero.

This space has a lot of nice properties, but it lacks one very important one - an efficient way of composing rotations - which is why we usually need to convert back to the quaternion representation first. Sad, because other than that I think it's a pretty cool looking space!


Source Code

If you want to try out any of the these visualizations yourself here is the quick and dirty code I used to generate these images/videos. You can also see the exact algorithm I used to color the points - essentially I take the axis of rotation as the RGB color, and then interpolate it with grey based on the amount of rotation around that axis (this makes the identity rotation grey).

import numpy as np
from mayavi import mlab

""" General Functions """

def quat_from_angle_axis(angle, axis):
    c = np.cos(angle / 2.0)
    s = np.sin(angle / 2.0)
    return np.concatenate([c[...,None], s[...,None] * axis], axis=-1)

def quat_mul(x, y):
    
    x0, x1, x2, x3 = x[...,0:1], x[...,1:2], x[...,2:3], x[...,3:4]
    y0, y1, y2, y3 = y[...,0:1], y[...,1:2], y[...,2:3], y[...,3:4]

    return np.concatenate([
        y0 * x0 - y1 * x1 - y2 * x2 - y3 * x3,      
        y0 * x1 + y1 * x0 - y2 * x3 + y3 * x2,   
        y0 * x2 + y1 * x3 + y2 * x0 - y3 * x1,    
        y0 * x3 - y1 * x2 + y2 * x1 + y3 * x0], axis=-1)

def quat_from_euler(x):
    r0 = quat_from_angle_axis(x[...,0], np.array([1,0,0]))
    r1 = quat_from_angle_axis(x[...,1], np.array([0,1,0]))
    r2 = quat_from_angle_axis(x[...,2], np.array([0,0,1]))
    return quat_mul(r2, quat_mul(r1, r0))

def quat_log(q, eps=1e-8):
    length = np.sqrt(np.sum(q[...,1:]*q[...,1:], axis=-1))
    return np.where((length < eps)[...,None],
        q[...,1:],
        (np.arctan2(length, q[...,0]) / length)[...,None] * q[...,1:])

def lerp(x, y, a):
    return (1.0 - a) * x + a * y

def log_color(x, eps=1e-8):
    length = np.sqrt(np.sum(x*x, axis=-1))
    color = ((x / length[...,None]) + 1.0) / 2.0
    grey = np.array([0.5, 0.5, 0.5])
    return np.where((length < eps)[...,None],
        grey,
        lerp(grey, color, 1 - (np.cos(2 * length)[...,None] + 1) / 2))

def plot(position, color, opacity, scale=0.5):
    
    # Convert to uint8
    rgba = np.concatenate([color, opacity[...,None]], axis=-1)
    rgba = np.clip(255 * rgba, 0, 255).astype(np.uint8)

    # plot the points
    pts = mlab.pipeline.scalar_scatter(
        position[...,0].ravel(), 
        position[...,1].ravel(), 
        position[...,2].ravel())
    
    # assign the colors to each point
    pts.add_attribute(rgba.reshape([-1, 4]), 'colors') 
    pts.data.point_data.set_active_scalars('colors')
    
    # set scaling for all the points
    g = mlab.pipeline.glyph(pts, transparent=True)
    g.glyph.glyph.scale_factor = scale 
    g.glyph.scale_mode = 'data_scaling_off'

""" Euler Angles Visualization """

mlab.figure(size=(640, 600))

position = []
for x in np.linspace(-2*np.pi, 4*np.pi, 35):
    for y in np.linspace(-2*np.pi, 4*np.pi, 35):
        for z in np.linspace(-2*np.pi, 4*np.pi, 35):
            position.append(np.array([x, y, z]))
            
position = np.array(position)

color = log_color(quat_log(quat_from_euler(position)))

inner_distance = np.max(abs(position - np.clip(position, 0, 2*np.pi)), axis=-1)
inner_factor = inner_distance / (2*np.pi)
inner_mask = inner_distance < 1e-5

opacity = np.ones_like(position[...,0])
opacity[ inner_mask] = 0.25
opacity[~inner_mask] = lerp(0.06, 0.0, inner_factor[~inner_mask])

plot(position, color, opacity, 0.5)

ax = mlab.axes(
    extent=[0, 2*np.pi, 0, 2*np.pi, 0, 2*np.pi], 
    ranges=[0, 2*np.pi, 0, 2*np.pi, 0, 2*np.pi])
ax.axes.label_format = ''
ax.axes.font_factor = 0.75
mlab.outline(extent=[0, 2*np.pi, 0, 2*np.pi, 0, 2*np.pi])
mlab.show()

""" Quaternions Visualization """

mlab.figure(size=(640, 600))

def fibonacci_sphere(samples=1):

    points = []
    phi = np.pi * (3. - np.sqrt(5.)) 

    for i in range(samples):
        y = 1 - (i / float(samples - 1)) * 2
        radius = np.sqrt(1 - y * y)

        theta = phi * i

        x = np.cos(theta) * radius
        z = np.sin(theta) * radius

        points.append((x, y, z))

    return points

position = np.array(fibonacci_sphere(1500))

# Swap position for better looking distribution
position = np.concatenate([
    position[...,0:1],
    position[...,2:3],
    position[...,1:2],
    ], axis=-1)

# Color with w on vertical axis
color = log_color(quat_log(np.concatenate([
    position[...,2:3], 
    position[...,0:1], 
    position[...,1:2], 
    np.zeros_like(position[...,0:1])
], axis=-1)))

# Fixed opacity
opacity = 0.3 * np.ones_like(position[...,0])

plot(position, color, opacity, 0.1)

ax = mlab.axes(
    extent=[-1, 1, -1, 1, -1, 1], 
    ranges=[-1, 1, -1, 1, -1, 1],
    xlabel='X',
    ylabel='Y',
    zlabel='W')
ax.axes.label_format = '%3.0f'
ax.axes.font_factor = 0.75

mlab.outline(extent=[-1, 1, -1, 1, -1, 1])
mlab.show()

""" Exponential Map Visualization """

mlab.figure(size=(640, 600))

position = []
for x in np.linspace(-2*np.pi, 2*np.pi, 25):
    for y in np.linspace(-2*np.pi, 2*np.pi, 25):
        for z in np.linspace(-2*np.pi, 2*np.pi, 25):
            point = np.array([x, y, z])
            length = np.sqrt(np.sum(point*point, axis=-1))
            if length < 2*np.pi:
                position.append(point)

position = np.array(position)

color = log_color(position)

inner_length = np.sqrt(np.sum(position*position, axis=-1))
inner_mask = inner_length < np.pi
inner_factor = np.maximum(inner_length - np.pi, 0.0) / np.pi

opacity = np.ones_like(position[...,0])
opacity[ inner_mask] = 0.25
opacity[~inner_mask] = lerp(0.06, 0.0, inner_factor)[~inner_mask]

plot(position, color, opacity, 0.4)

ax = mlab.axes(
    extent=[-np.pi, np.pi, -np.pi, np.pi, -np.pi, np.pi], 
    ranges=[-np.pi, np.pi, -np.pi, np.pi, -np.pi, np.pi],
    nb_labels=0)
ax.axes.label_format = ''
ax.axes.font_factor = 0.75

mlab.outline(extent=[-np.pi, np.pi, -np.pi, np.pi, -np.pi, np.pi])
mlab.show()
github twitter rss