Icon BVHView


Icon Dead Blending Node in Unreal Engine


Icon Propagating Velocities through Animation Systems


Icon Cubic Interpolation of Quaternions


Icon Dead Blending


Icon Perfect Tracking with Springs


Icon Creating Looping Animations from Motion Capture


Icon My Favourite Things


Icon Inertialization Transition Cost


Icon Scalar Velocity


Icon Tags, Ranges and Masks


Icon Fitting Code Driven Displacement


Icon atoi and Trillions of Whales


Icon SuperTrack: Motion Tracking for Physically Simulated Characters using Supervised Learning


Icon Joint Limits


Icon Code vs Data Driven Displacement


Icon Exponential Map, Angle Axis, and Angular Velocity


Icon Encoding Events for Neural Networks


Icon Visualizing Rotation Spaces


Icon Spring-It-On: The Game Developer's Spring-Roll-Call


Icon Interviewing Advice from the Other Side of the Table


Icon Saguaro


Icon Learned Motion Matching


Icon Why Can't I Reproduce Their Results?


Icon Latinendian vs Arabendian


Icon Machine Learning, Kolmogorov Complexity, and Squishy Bunnies


Icon Subspace Neural Physics: Fast Data-Driven Interactive Simulation


Icon Software for Rent


Icon Naraleian Caterpillars


Icon The Scientific Method is a Virus


Icon Local Minima, Saddle Points, and Plateaus


Icon Robust Solving of Optical Motion Capture Data by Denoising


Icon Simple Concurrency in Python


Icon The Software Thief


Icon ASCII : A Love Letter


Icon My Neural Network isn't working! What should I do?


Icon Phase-Functioned Neural Networks for Character Control


Icon 17 Line Markov Chain


Icon 14 Character Random Number Generator


Icon Simple Two Joint IK


Icon Generating Icons with Pixel Sorting


Icon Neural Network Ambient Occlusion


Icon Three Short Stories about the East Coast Main Line


Icon The New Alphabet


Icon "The Color Munifni Exists"


Icon A Deep Learning Framework For Character Motion Synthesis and Editing


Icon The Halting Problem and The Moral Arbitrator


Icon The Witness


Icon Four Seasons Crisp Omelette


Icon At the Bottom of the Elevator


Icon Tracing Functions in Python


Icon Still Things and Moving Things


Icon water.cpp


Icon Making Poetry in Piet


Icon Learning Motion Manifolds with Convolutional Autoencoders


Icon Learning an Inverse Rig Mapping for Character Animation


Icon Infinity Doesn't Exist


Icon Polyconf


Icon Raleigh


Icon The Skagerrak


Icon Printing a Stack Trace with MinGW


Icon The Border Pines


Icon You could have invented Parser Combinators


Icon Ready for the Fight


Icon Earthbound


Icon Turing Drawings


Icon Lost Child Announcement


Icon Shelter


Icon Data Science, how hard can it be?


Icon Denki Furo


Icon In Defence of the Unitype


Icon Maya Velocity Node


Icon Sandy Denny


Icon What type of Machine is the C Preprocessor?


Icon Which AI is more human?


Icon Gone Home


Icon Thoughts on Japan


Icon Can Computers Think?


Icon Counting Sheep & Infinity


Icon How Nature Builds Computers


Icon Painkillers


Icon Correct Box Sphere Intersection


Icon Avoiding Shader Conditionals


Icon Writing Portable OpenGL


Icon The Only Cable Car in Ireland


Icon Is the C Preprocessor Turing Complete?


Icon The aesthetics of code


Icon Issues with SDL on iOS and Android


Icon How I learned to stop worrying and love statistics


Icon PyMark


Icon AutoC Tools


Icon Scripting xNormal with Python


Icon Six Myths About Ray Tracing


Icon The Web Giants Will Fall


Icon PyAutoC


Icon The Pirate Song


Icon Dear Esther


Icon Unsharp Anti Aliasing


Icon The First Boy


Icon Parallel programming isn't hard, optimisation is.


Icon Skyrim


Icon Recognizing a language is solving a problem


Icon Could an animal learn to program?




Icon Pure Depth SSAO


Icon Synchronized in Python


Icon 3d Printing


Icon Real Time Graphics is Virtual Reality


Icon Painting Style Renderer


Icon A very hard problem


Icon Indie Development vs Modding


Icon Corange


Icon 3ds Max PLY Exporter


Icon A Case for the Technical Artist


Icon Enums


Icon Scorpions have won evolution


Icon Dirt and Ashes


Icon Lazy Python


Icon Subdivision Modelling


Icon The Owl


Icon Mouse Traps


Icon Updated Art Reel


Icon Tech Reel


Icon Graphics Aren't the Enemy


Icon On Being A Games Artist


Icon The Bluebird


Icon Everything2


Icon Duck Engine


Icon Boarding Preview


Icon Sailing Preview


Icon Exodus Village Flyover


Icon Art Reel




Icon One Cat Just Leads To Another

Which AI is more human?

Created on Dec. 18, 2013, 4:11 p.m.

Disclaimer: I'm not a historian, or a student of AI, so please forgive any inaccuracies in my historic retellings...

Every now and again a article comes floating around the internet lamenting about the days of Good Old-Fashioned AI research, when men were men, and researching AI was like the adventures of a computer science version of Indiana Jones.

Good old fashioned AI was about using logic and reasoning to produce an intelligence. The approach was to make high level observations about a particular task or problem, and formalizing these in a logical and consistent way that would allow a computer to solve the same task when the situation varied.

The ultimate goal of this research was to create a machine with human-like logic and reasoning skills. This machine could then be given semantic knowledge about something or other, and use its skills to divulge solutions to new and unique problems.

But in the 1970s the AI Winter hit. This method of AI research, which had never claimed to be easy, had stagnated, and failures had accumulated. Funding was cut and for a long time it looked like AI was dead.

A new approach to AI appeared slowly gained traction. It was based upon statistical methods, and learnt from data, processing banks of information to try and make intelligent decisions.

Rather than reasoning, these methods appeared at face value to use mathematical tricks and brute force to get results. To the researchers from the good old days it was all artificial, and no intelligence. The new approach to AI was cold, mechanical. It was coined machine learning and damned by many for not being human.

This was all shown in the research of natural language. Early on great progress was made by Noam Chomsky and many other researchers in the understanding of the logical and systematic rules that encode natural and artificial languages. These opened large vistas of understanding and research in many other fields as well as language, but eventually their practically for real applications such as machine translation reached a stopping point.

It was so bad that IBM Researcher Frederick Jelinek became famous for his often quoted statement "Every time I fire a linguist, the performance of the speech recognizer goes up".

Natural language, with all its irregularities, was just not possible to encode in a handful of rules. Every slight variation and peculiarity broke these methods. The results were simply not of high enough quality to progress with processing times ballooning.

These days Google traverses the web and builds huge statistical models of language it uses to do its translation. All logic and reason is left at the wayside, and even the known and infallible structures of language are ignored. See: How I learnt to stop worrying and love statistics.

If human intelligence really is characterized by logic and reason it would entail that I could teach someone a foreign language simply by passing them a sheet with the grammar on it, and a list of words with their meanings.

Providing our brains were the logical reasoning machines, as assumed by early AI research, this should be sufficient to teach me something.

Of course this is not true. Even if I know you are not lying you cannot teach me something by just telling me it. While some humans are good at logic, none of us are good enough to build those kinds of connections in our brain without fretting.

On the other hand all of us are excellent at pattern matching. This means the inverse approach to teaching is almost always better. It is better to give someone a lot of examples, and to watch as they divulge the logical rules that govern the system themselves.

This isn't specific to language. Even in an extremely logical domain such as mathematics the most effective teachers teach examples first and the generalizations after. Talking about generalizations first and being specific later is an easy way to confuse your students.

Humans appear to learn the same way machines do.

Imagine we are trying to write an AI which can distinguish images of apples from oranges. In machine learning we give it some training data with correct answers and from this it learns how to classify new fruit.

If this system encounters apples 75% in training it will bias its classification toward apples, and only pick oranges if it is really sure of the result. This is called a prior probability.

Think for a second how horrible this idea sounds to good old fashioned AI researchers. The information as to if it is an apple or and orange is fully encoded in the image! The decision as to if it is an apple or an orange has nothing to do with what this system has encountered before!

The idea of probability as a whole appears horrible to these researchers. An thing is not 60% an apple and 40% an orange. It is either one or the other.

But prior probabilities have become are cornerstone of machine learning methods and are only disregarded at all costs by researchers. There is very good reasoning for this. Is because prior probabilities, like many other aspects of machine learning, are very human in their origin.

Prior probability is linked to the human concept of experience. Which is embodied in the storytellers guidance show, don't tell.

Many stories can be boiled down to a couple of sentences that state the point the story is trying to make. For example love conquers all or greed doesn't pay. But simply telling someone this sentence doesn't provide almost nearly the same impact as getting them to read a novel about it. Nor is it nearly as enjoyable, or accurate.

A novel adds weight and experience to certain situations. As humans we are naturally reserved creatures and we need engagement and evidence to believe something is true. Someone cannot just tell us it.

This is like the prior probability in statistical models. It makes us wary of things we have not seen before and gets us to hedge our bets when other factors make us uncertain. The real world requires scientific analysis to understand. Is it any surprise that machines should need to do this too?

The new AI has moved the logic from our conscious mind, to our subconscious and biological minds. It has rephrased the question from how to do we do this? to how to we learn to do this?. Perhaps in some people's minds we have still made a machine that is dumber before. If this is the case, why can it do so much more!

Not only does the new approach perform much better at many tasks, but it is arguable more human too. This asks a number of questions.

Are we really intelligent? Are we really in control? Are we really logical? I know what I think...

github twitter rss